211 research outputs found

    NMGRS: Neighborhood-based multigranulation rough sets

    Get PDF
    AbstractRecently, a multigranulation rough set (MGRS) has become a new direction in rough set theory, which is based on multiple binary relations on the universe. However, it is worth noticing that the original MGRS can not be used to discover knowledge from information systems with various domains of attributes. In order to extend the theory of MGRS, the objective of this study is to develop a so-called neighborhood-based multigranulation rough set (NMGRS) in the framework of multigranulation rough sets. Furthermore, by using two different approximating strategies, i.e., seeking common reserving difference and seeking common rejecting difference, we first present optimistic and pessimistic 1-type neighborhood-based multigranulation rough sets and optimistic and pessimistic 2-type neighborhood-based multigranulation rough sets, respectively. Through analyzing several important properties of neighborhood-based multigranulation rough sets, we find that the new rough sets degenerate to the original MGRS when the size of neighborhood equals zero. To obtain covering reducts under neighborhood-based multigranulation rough sets, we then propose a new definition of covering reduct to describe the smallest attribute subset that preserves the consistency of the neighborhood decision system, which can be calculated by Chen’s discernibility matrix approach. These results show that the proposed NMGRS largely extends the theory and application of classical MGRS in the context of multiple granulations

    Covering Based Pessimistic Multigranular Rough Equalities and their Properties

    Full text link

    Incomplete Variable Multigranulation Rough Sets Decision

    Full text link

    Two New Types of Multiple Granulation Rough Set

    Get PDF

    Rough Set Approach to Incomplete Multiscale Information System

    Get PDF
    Multiscale information system is a new knowledge representation system for expressing the knowledge with different levels of granulations. In this paper, by considering the unknown values, which can be seen everywhere in real world applications, the incomplete multiscale information system is firstly investigated. The descriptor technique is employed to construct rough sets at different scales for analyzing the hierarchically structured data. The problem of unravelling decision rules at different scales is also addressed. Finally, the reduct descriptors are formulated to simplify decision rules, which can be derived from different scales. Some numerical examples are employed to substantiate the conceptual arguments

    Granular Partition and Concept Lattice Division Based on Quotient Space

    Get PDF
    In this paper, we investigate the relationship between the concept lattice and quotient space by granularity. A new framework of knowledge representation - granular quotient space - is constructed and it demonstrates that concept lattice classing is linked to quotient space. The covering of the formal context is firstly given based on this granule, then the granular concept lattice model and its construction are discussed on the sub-context which is formed by the granular classification set. We analyze knowledge reduction and give the description of granular entropy techniques, including some novel formulas. Lastly, a concept lattice constructing algorithm is proposed based on multi-granular feature selection in quotient space. Examples and experiments show that the algorithm can obtain a minimal reduct and is much more efficient than classical incremental concept formation methods

    Spatial refinement as collection order relations

    Get PDF
    An abstract examination of refinement (and conversely, coarsening) with respect to the involved spatial relations gives rise to formulated order relations between spatial coverings, which are defined as complete-coverage representations composed of regional granules. Coverings, which generalize partitions by allowing granules to overlap, enhance hierarchical geocomputations in several ways. Refinement between spatial coverings has underlying patterns with respect to inclusion—formalized as binary topological relations—between their granules. The patterns are captured by collection relations of inclusion, which are obtained by constraining relevant topological relations with cardinality properties such as uniqueness and totality. Conjoining relevant collection relations of equality and proper inclusion with the overlappedness (non-overlapped or overlapped) of the refining and the refined covering yields collection order relations, which serve as specific types of refinement between spatial coverings. The examination results in 75 collection order relations including seven types of equality and 34 pairs of strict or non-strict types of refinement and coarsening, out of which 19 pairs form partial collection orders
    • …
    corecore