22,459 research outputs found

    Covering problems in edge- and node-weighted graphs

    Full text link
    This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.Comment: To appear in SWAT 201

    Spider covers for prize-collecting network activation problem

    Full text link
    In the network activation problem, each edge in a graph is associated with an activation function, that decides whether the edge is activated from node-weights assigned to its end-nodes. The feasible solutions of the problem are the node-weights such that the activated edges form graphs of required connectivity, and the objective is to find a feasible solution minimizing its total weight. In this paper, we consider a prize-collecting version of the network activation problem, and present first non- trivial approximation algorithms. Our algorithms are based on a new LP relaxation of the problem. They round optimal solutions for the relaxation by repeatedly computing node-weights activating subgraphs called spiders, which are known to be useful for approximating the network activation problem

    Hardness results and approximation algorithms for some problems on graphs

    Get PDF
    This thesis has two parts. In the first part, we study some graph covering problems with a non-local covering rule that allows a "remote" node to be covered by repeatedly applying the covering rule. In the second part, we provide some results on the packing of Steiner trees. In the Propagation problem we are given a graph GG and the goal is to find a minimum-sized set of nodes SS that covers all of the nodes, where a node vv is covered if (1) vv is in SS, or (2) vv has a neighbor uu such that uu and all of its neighbors except vv are covered. Rule (2) is called the propagation rule, and it is applied iteratively. Throughout, we use nn to denote the number of nodes in the input graph. We prove that the path-width parameter is a lower bound for the optimal value. We show that the Propagation problem is NP-hard in planar weighted graphs. We prove that it is NP-hard to approximate the optimal value to within a factor of 2log1ϵn2^{\log^{1-\epsilon}{n}} in weighted (general) graphs. The second problem that we study is the Power Dominating Set problem. This problem has two covering rules. The first rule is the same as the domination rule as in the Dominating Set problem, and the second rule is the same propagation rule as in the Propagation problem. We show that it is hard to approximate the optimal value to within a factor of 2log1ϵn2^{\log^{1-\epsilon}{n}} in general graphs. We design and analyze an approximation algorithm with a performance guarantee of O(n)O(\sqrt{n}) on planar graphs. We formulate a common generalization of the above two problems called the General Propagation problem. We reformulate this general problem as an orientation problem, and based on this reformulation we design a dynamic programming algorithm. The algorithm runs in linear time when the graph has tree-width O(1)O(1). Motivated by applications, we introduce a restricted version of the problem that we call the \ell-round General Propagation problem. We give a PTAS for the \ell-round General Propagation problem on planar graphs, for small values of \ell. Our dynamic programming algorithms and the PTAS can be extended to other problems in networks with similar propagation rules. As an example we discuss the extension of our results to the Target Set Selection problem in the threshold model of the diffusion processes. In the second part of the thesis, we focus on the Steiner Tree Packing problem. In this problem, we are given a graph GG and a subset of terminal nodes RV(G)R\subseteq V(G). The goal in this problem is to find a maximum cardinality set of disjoint trees that each spans RR, that is, each of the trees should contain all terminal nodes. In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the element-disjoint version, the trees have to be node disjoint on non-terminal nodes and edge-disjoint on edges adjacent to terminals. We show that both problems are NP-hard when there are only 33 terminals. Our main focus is on planar instances of these problems. We show that the edge-disjoint version of the problem is NP-hard even in planar graphs with 33 terminals on the same face of the embedding. Next, we design an algorithm that achieves an approximation guarantee of 121k\frac{1}{2}-\frac{1}{k}, given a planar graph that is kk element-connected on the terminals; in fact, given such a graph the algorithm returns k/21k/2-1 element-disjoint Steiner trees. Using this algorithm we get an approximation algorithm with guarantee of (almost) 44 for the edge-disjoint version of the problem in planar graphs. We also show that the natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality ratio of 2ϵ2-\epsilon in planar graphs

    Shorter tours and longer detours: Uniform covers and a bit beyond

    Get PDF
    Motivated by the well known four-thirds conjecture for the traveling salesman problem (TSP), we study the problem of {\em uniform covers}. A graph G=(V,E)G=(V,E) has an α\alpha-uniform cover for TSP (2EC, respectively) if the everywhere α\alpha vector (i.e. {α}E\{\alpha\}^{E}) dominates a convex combination of incidence vectors of tours (2-edge-connected spanning multigraphs, respectively). The polyhedral analysis of Christofides' algorithm directly implies that a 3-edge-connected, cubic graph has a 1-uniform cover for TSP. Seb\H{o} asked if such graphs have (1ϵ)(1-\epsilon)-uniform covers for TSP for some ϵ>0\epsilon > 0. Indeed, the four-thirds conjecture implies that such graphs have 8/9-uniform covers. We show that these graphs have 18/19-uniform covers for TSP. We also study uniform covers for 2EC and show that the everywhere 15/17 vector can be efficiently written as a convex combination of 2-edge-connected spanning multigraphs. For a weighted, 3-edge-connected, cubic graph, our results show that if the everywhere 2/3 vector is an optimal solution for the subtour linear programming relaxation, then a tour with weight at most 27/19 times that of an optimal tour can be found efficiently. Node-weighted, 3-edge-connected, cubic graphs fall into this category. In this special case, we can apply our tools to obtain an even better approximation guarantee. To extend our approach to input graphs that are 2-edge-connected, we present a procedure to decompose an optimal solution for the subtour relaxation for TSP into spanning, connected multigraphs that cover each 2-edge cut an even number of times. Using this decomposition, we obtain a 17/12-approximation algorithm for minimum weight 2-edge-connected spanning subgraphs on subcubic, node-weighted graphs

    Robust Assignments via Ear Decompositions and Randomized Rounding

    Get PDF
    Many real-life planning problems require making a priori decisions before all parameters of the problem have been revealed. An important special case of such problem arises in scheduling problems, where a set of tasks needs to be assigned to the available set of machines or personnel (resources), in a way that all tasks have assigned resources, and no two tasks share the same resource. In its nominal form, the resulting computational problem becomes the \emph{assignment problem} on general bipartite graphs. This paper deals with a robust variant of the assignment problem modeling situations where certain edges in the corresponding graph are \emph{vulnerable} and may become unavailable after a solution has been chosen. The goal is to choose a minimum-cost collection of edges such that if any vulnerable edge becomes unavailable, the remaining part of the solution contains an assignment of all tasks. We present approximation results and hardness proofs for this type of problems, and establish several connections to well-known concepts from matching theory, robust optimization and LP-based techniques.Comment: Full version of ICALP 2016 pape
    corecore