1,900 research outputs found

    Covering Points by Disjoint Boxes with Outliers

    Get PDF
    For a set of n points in the plane, we consider the axis--aligned (p,k)-Box Covering problem: Find p axis-aligned, pairwise-disjoint boxes that together contain n-k points. In this paper, we consider the boxes to be either squares or rectangles, and we want to minimize the area of the largest box. For general p we show that the problem is NP-hard for both squares and rectangles. For a small, fixed number p, we give algorithms that find the solution in the following running times: For squares we have O(n+k log k) time for p=1, and O(n log n+k^p log^p k time for p = 2,3. For rectangles we get O(n + k^3) for p = 1 and O(n log n+k^{2+p} log^{p-1} k) time for p = 2,3. In all cases, our algorithms use O(n) space.Comment: updated version: - changed problem from 'cover exactly n-k points' to 'cover at least n-k points' to avoid having non-feasible solutions. Results are unchanged. - added Proof to Lemma 11, clarified some sections - corrected typos and small errors - updated affiliations of two author

    Covering many points with a small-area box

    Get PDF
    Let PP be a set of nn points in the plane. We show how to find, for a given integer k>0k>0, the smallest-area axis-parallel rectangle that covers kk points of PP in O(nk2logn+nlog2n)O(nk^2 \log n+ n\log^2 n) time. We also consider the problem of, given a value α>0\alpha>0, covering as many points of PP as possible with an axis-parallel rectangle of area at most α\alpha. For this problem we give a probabilistic (1ε)(1-\varepsilon)-approximation that works in near-linear time: In O((n/ε4)log3nlog(1/ε))O((n/\varepsilon^4)\log^3 n \log (1/\varepsilon)) time we find an axis-parallel rectangle of area at most α\alpha that, with high probability, covers at least (1ε)κ(1-\varepsilon)\mathrm{\kappa^*} points, where κ\mathrm{\kappa^*} is the maximum possible number of points that could be covered

    A Constant Approximation for Colorful k-Center

    Get PDF
    In this paper, we consider the colorful k-center problem, which is a generalization of the well-known k-center problem. Here, we are given red and blue points in a metric space, and a coverage requirement for each color. The goal is to find the smallest radius rho, such that with k balls of radius rho, the desired number of points of each color can be covered. We obtain a constant approximation for this problem in the Euclidean plane. We obtain this result by combining a "pseudo-approximation" algorithm that works in any metric space, and an approximation algorithm that works for a special class of instances in the plane. The latter algorithm uses a novel connection to a certain matching problem in graphs

    New Embedded Representations and Evaluation Protocols for Inferring Transitive Relations

    Full text link
    Beyond word embeddings, continuous representations of knowledge graph (KG) components, such as entities, types and relations, are widely used for entity mention disambiguation, relation inference and deep question answering. Great strides have been made in modeling general, asymmetric or antisymmetric KG relations using Gaussian, holographic, and complex embeddings. None of these directly enforce transitivity inherent in the is-instance-of and is-subtype-of relations. A recent proposal, called order embedding (OE), demands that the vector representing a subtype elementwise dominates the vector representing a supertype. However, the manner in which such constraints are asserted and evaluated have some limitations. In this short research note, we make three contributions specific to representing and inferring transitive relations. First, we propose and justify a significant improvement to the OE loss objective. Second, we propose a new representation of types as hyper-rectangular regions, that generalize and improve on OE. Third, we show that some current protocols to evaluate transitive relation inference can be misleading, and offer a sound alternative. Rather than use black-box deep learning modules off-the-shelf, we develop our training networks using elementary geometric considerations.Comment: Accepted at SIGIR 201

    Massively-Parallel Heat Map Sorting and Applications To Explainable Clustering

    Full text link
    Given a set of points labeled with kk labels, we introduce the heat map sorting problem as reordering and merging the points and dimensions while preserving the clusters (labels). A cluster is preserved if it remains connected, i.e., if it is not split into several clusters and no two clusters are merged. We prove the problem is NP-hard and we give a fixed-parameter algorithm with a constant number of rounds in the massively parallel computation model, where each machine has a sublinear memory and the total memory of the machines is linear. We give an approximation algorithm for a NP-hard special case of the problem. We empirically compare our algorithm with k-means and density-based clustering (DBSCAN) using a dimensionality reduction via locality-sensitive hashing on several directed and undirected graphs of email and computer networks
    corecore