2,107 research outputs found

    Vertex covers by monochromatic pieces - A survey of results and problems

    Get PDF
    This survey is devoted to problems and results concerning covering the vertices of edge colored graphs or hypergraphs with monochromatic paths, cycles and other objects. It is an expanded version of the talk with the same title at the Seventh Cracow Conference on Graph Theory, held in Rytro in September 14-19, 2014.Comment: Discrete Mathematics, 201

    Covering graphs by monochromatic trees and Helly-type results for hypergraphs

    Full text link
    How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given rr-edge-coloured graph GG? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph HH if it is known that any collection of a few edges of HH has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Gir\~ao, Letzter and Sahasrabudhe.Comment: 20 pages including references plus 2 pages of an Appendi

    Hamiltonicity and σ\sigma-hypergraphs

    Get PDF
    We define and study a special type of hypergraph. A σ\sigma-hypergraph H=H(n,r,qH= H(n,r,q ∣\mid σ\sigma), where σ\sigma is a partition of rr, is an rr-uniform hypergraph having nqnq vertices partitioned into n n classes of qq vertices each. If the classes are denoted by V1V_1, V2V_2,...,VnV_n, then a subset KK of V(H)V(H) of size rr is an edge if the partition of rr formed by the non-zero cardinalities ∣ \mid KK ∩\cap Vi∣V_i \mid, 1≤i≤n 1 \leq i \leq n, is σ\sigma. The non-empty intersections KK ∩\cap ViV_i are called the parts of KK, and s(σ)s(\sigma) denotes the number of parts. We consider various types of cycles in hypergraphs such as Berge cycles and sharp cycles in which only consecutive edges have a nonempty intersection. We show that most σ\sigma-hypergraphs contain a Hamiltonian Berge cycle and that, for n≥s+1n \geq s+1 and q≥r(r−1)q \geq r(r-1), a σ\sigma-hypergraph HH always contains a sharp Hamiltonian cycle. We also extend this result to kk-intersecting cycles
    • …
    corecore