2,027 research outputs found

    Novel QoS-aware proactive spectrum access techniques for cognitive radio using machine learning

    Get PDF
    Traditional cognitive radio (CR) spectrum access techniques have been primitive and inefficient due to being blind to the occupancy conditions of the spectrum bands to be sensed. In addition, current spectrum access techniques are also unable to detect network changes or even consider the requirements of unlicensed users, leading to a poorer quality of service (QoS) and excessive latency. As user-specific approaches will play a key role in future wireless communication networks, the conventional CR spectrum access should also be updated in order to be more effective and agile. In this paper, a comprehensive and novel solution is proposed to decrease the sensing latency and to make the CR networks (CRNs) aware of unlicensed user requirements. As such, a proactive process with a novel QoS-based optimization phase is proposed, consisting of two different decision strategies. Initially, future traffic loads of the different radio access technologies (RATs), occupying different bands of the spectrum, are predicted using the artificial neural networks (ANNs). Based on these predictions, two strategies are proposed. In the first one, which solely focuses on latency, a virtual wideband (WB) sensing approach is developed, where predicted relative traffic loads in WB are exploited to enable narrowband (NB) sensing. The second one, based on Q -learning, focuses not only on minimizing the sensing latency but also on satisfying other user requirements. The results reveal that the first strategy manages to significantly reduce the sensing latency of the random selection process by 59.6%, while the Q -learning assisted second strategy enhanced the full-satisfaction by up to 95.7%

    Advanced mobile network monitoring and automated optimization methods

    Get PDF
    The operation of mobile networks is a complex task with the networks serving a large amount of subscribers with both voice and data services, containing extensive sets of elements, generating extensive amounts of measurement data and being controlled by a large amount of parameters. The objective of this thesis was to ease the operation of mobile networks by introducing advanced monitoring and automated optimization methods. In the monitoring domain the thesis introduced visualization and anomaly detection methods that were applied to detect intrusions, mal-functioning network elements and cluster network elements to do parameter optimization on network-element-cluster level. A key component in the monitoring methods was the Self-Organizing Map. In the automated optimization domain several rule-based Wideband CDMA radio access parameter optimization methods were introduced. The methods tackled automated optimization in areas such as admission control, handover control and mobile base station cell size setting. The results from test usage of the monitoring methods indicated good performance and simulations indicated that the automated optimization methods enable significant improvements in mobile network performance. The presented methods constitute promising feature candidates for the mobile network management system.reviewe

    PlaNet - Photo Geolocation with Convolutional Neural Networks

    Full text link
    Is it possible to build a system to determine the location where a photo was taken using just its pixels? In general, the problem seems exceptionally difficult: it is trivial to construct situations where no location can be inferred. Yet images often contain informative cues such as landmarks, weather patterns, vegetation, road markings, and architectural details, which in combination may allow one to determine an approximate location and occasionally an exact location. Websites such as GeoGuessr and View from your Window suggest that humans are relatively good at integrating these cues to geolocate images, especially en-masse. In computer vision, the photo geolocation problem is usually approached using image retrieval methods. In contrast, we pose the problem as one of classification by subdividing the surface of the earth into thousands of multi-scale geographic cells, and train a deep network using millions of geotagged images. While previous approaches only recognize landmarks or perform approximate matching using global image descriptors, our model is able to use and integrate multiple visible cues. We show that the resulting model, called PlaNet, outperforms previous approaches and even attains superhuman levels of accuracy in some cases. Moreover, we extend our model to photo albums by combining it with a long short-term memory (LSTM) architecture. By learning to exploit temporal coherence to geolocate uncertain photos, we demonstrate that this model achieves a 50% performance improvement over the single-image model
    corecore