10,573 research outputs found

    Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

    Get PDF
    Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femtocells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of smallcells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-onedge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-onedge configuration to establish a greener network over the other competitive configurations

    On Modeling Heterogeneous Wireless Networks Using Non-Poisson Point Processes

    Full text link
    Future wireless networks are required to support 1000 times higher data rate, than the current LTE standard. In order to meet the ever increasing demand, it is inevitable that, future wireless networks will have to develop seamless interconnection between multiple technologies. A manifestation of this idea is the collaboration among different types of network tiers such as macro and small cells, leading to the so-called heterogeneous networks (HetNets). Researchers have used stochastic geometry to analyze such networks and understand their real potential. Unsurprisingly, it has been revealed that interference has a detrimental effect on performance, especially if not modeled properly. Interference can be correlated in space and/or time, which has been overlooked in the past. For instance, it is normally assumed that the nodes are located completely independent of each other and follow a homogeneous Poisson point process (PPP), which is not necessarily true in real networks since the node locations are spatially dependent. In addition, the interference correlation created by correlated stochastic processes has mostly been ignored. To this end, we take a different approach in modeling the interference where we use non-PPP, as well as we study the impact of spatial and temporal correlation on the performance of HetNets. To illustrate the impact of correlation on performance, we consider three case studies from real-life scenarios. Specifically, we use massive multiple-input multiple-output (MIMO) to understand the impact of spatial correlation; we use the random medium access protocol to examine the temporal correlation; and we use cooperative relay networks to illustrate the spatial-temporal correlation. We present several numerical examples through which we demonstrate the impact of various correlation types on the performance of HetNets.Comment: Submitted to IEEE Communications Magazin

    Performance Analysis of Micro Unmanned Airborne Communication Relays for Cellular Networks

    Full text link
    This paper analyses the potential of utilising small unmanned-aerial-vehicles (SUAV) as wireless relays for assisting cellular network performance. Whilst high altitude wireless relays have been investigated over the past 2 decades, the new class of low cost SUAVs offers new possibilities for addressing local traffic imbalances and providing emergency coverage.We present field-test results from an SUAV test-bed in both urban and rural environments. The results show that trough-to-peak throughput improvements can be achieved for users in poor coverage zones. Furthermore, the paper reinforces the experimental study with large-scale network analysis using both stochastic geometry and multi-cell simulation results.Comment: conferenc

    Self organising cloud cells: a resource efficient network densification strategy

    Get PDF
    Network densification is envisioned as the key enabler for 2020 vision that requires cellular systems to grow in capacity by hundreds of times to cope with unprecedented traffic growth trends being witnessed since advent of broadband on the move. However, increased energy consumption and complex mobility management associated with network densifications remain as the two main challenges to be addressed before further network densification can be exploited on a wide scale. In the wake of these challenges, this paper proposes and evaluates a novel dense network deployment strategy for increasing the capacity of future cellular systems without sacrificing energy efficiency and compromising mobility performance. Our deployment architecture consists of smart small cells, called cloud nodes, which provide data coverage to individual users on a demand bases while taking into account the spatial and temporal dynamics of user mobility and traffic. The decision to activate the cloud nodes, such that certain performance objectives at system level are targeted, is carried out by the overlaying macrocell based on a fuzzy-logic framework. We also compare the proposed architecture with conventional macrocell only deployment and pure microcell-based dense deployment in terms of blocking probability, handover probability and energy efficiency and discuss and quantify the trade-offs therein

    On the traffic offloading in Wi-Fi supported heterogeneous wireless networks

    Get PDF
    Heterogeneous small cell networks (HetSNet) comprise several low power, low cost (SBSa), (D2D) enabled links wireless-fidelity (Wi-Fi) access points (APs) to support the existing macrocell infrastructure, decrease over the air signaling and energy consumption, and increase network capacity, data rate and coverage. This paper presents an active user dependent path loss (PL) based traffic offloading (TO) strategy for HetSNets and a comparative study on two techniques to offload the traffic from macrocell to (SBSs) for indoor environments: PL and signal-to-interference ratio (SIR) based strategies. To quantify the improvements, the PL based strategy against the SIR based strategy is compared while considering various macrocell and (SBS) coverage areas and traffic–types. On the other hand, offloading in a dense urban setting may result in overcrowding the (SBSs). Therefore, hybrid traffic–type driven offloading technologies such as (WiFi) and (D2D) were proposed to en route the delay tolerant applications through (WiFi) (APs) and (D2D) links. It is necessary to illustrate the impact of daily user traffic profile, (SBSs) access schemes and traffic–type while deciding how much of the traffic should be offloaded to (SBSs). In this context, (AUPF) is introduced to account for the population of active small cells which depends on the variable traffic load due to the active users
    • …
    corecore