827 research outputs found

    Downlink and Uplink Cell Association with Traditional Macrocells and Millimeter Wave Small Cells

    Full text link
    Millimeter wave (mmWave) links will offer high capacity but are poor at penetrating into or diffracting around solid objects. Thus, we consider a hybrid cellular network with traditional sub 6 GHz macrocells coexisting with denser mmWave small cells, where a mobile user can connect to either opportunistically. We develop a general analytical model to characterize and derive the uplink and downlink cell association in view of the SINR and rate coverage probabilities in such a mixed deployment. We offer extensive validation of these analytical results (which rely on several simplifying assumptions) with simulation results. Using the analytical results, different decoupled uplink and downlink cell association strategies are investigated and their superiority is shown compared to the traditional coupled approach. Finally, small cell biasing in mmWave is studied, and we show that unprecedented biasing values are desirable due to the wide bandwidth.Comment: 30 pages, 9 figures. Submitted to IEEE Transactions on Wireless Communication

    A Normalization Model for Analyzing Multi-Tier Millimeter Wave Cellular Networks

    Full text link
    Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS) links, we introduce a normalization model to simplify the analysis of multi-tier mmWave cellular networks. The highlight of the model is that we convert a multi-tier mmWave cellular network into a single-tier mmWave network, where all the base stations (BSs) have the same normalized transmit power 1 and the densities of BSs scaled by LOS or NLOS scaling factors respectively follow piecewise constant function which has multiple demarcation points. On this basis, expressions for computing the coverage probability are obtained in general case with beamforming alignment errors and the special case with perfect beamforming alignment in the communication. According to corresponding numerical exploration, we conclude that the normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model. Besides, an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.Comment: 7 pages, 4 figure
    • …
    corecore