2,740 research outputs found

    Coverage and Connectivity of Ad-Hoc Networks in Presence of Channel Randomness

    Get PDF
    In this paper we present an analytical procedure for the computation of the node isolation probability in an ad-hoc network in presence of channel randomness, with applications to shadowing and fading phenomena. Such a probability coincides with the complement of the coverage probability, given that nodes are distributed according to a Poisson point process. These results are used to obtain an estimate of the connectivity features for very dense networks. For the case of superimposed lognormal shadowing and Rayleigh fading, the connectivity improvements achievable by means of diversity schemes are investigated

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Communication Over a Wireless Network With Random Connections

    Get PDF
    A network of nodes in which pairs communicate over a shared wireless medium is analyzed. We consider the maximum total aggregate traffic flow possible as given by the number of users multiplied by their data rate. The model in this paper differs substantially from the many existing approaches in that the channel connections in this network are entirely random: rather than being governed by geometry and a decay-versus-distance law, the strengths of the connections between nodes are drawn independently from a common distribution. Such a model is appropriate for environments where the first-order effect that governs the signal strength at a receiving node is a random event (such as the existence of an obstacle), rather than the distance from the transmitter. It is shown that the aggregate traffic flow as a function of the number of nodes n is a strong function of the channel distribution. In particular, for certain distributions the aggregate traffic flow is at least n/(log n)^d for some d≫0, which is significantly larger than the O(sqrt n) results obtained for many geometric models. The results provide guidelines for the connectivity that is needed for large aggregate traffic. The relation between the proposed model and existing distance-based models is shown in some cases

    An Analytical Expression for k-connectivity of Wireless Ad Hoc Networks

    Get PDF
    Over the last few years coverage and connectivity of wireless ad hoc networks have fascinated considerable attention. The presented paper analyses and investigates the issues of k-connectivity probability and its robustness in wireless ad hoc-network while considering fading techniques like lognormal fading, Rayleigh fading, and nakagami fading in the ad hoc communication environment, by means of shadowing and fading phenomenon. In case of k-connected wireless sensor network (WSNs), this technique permits the routing of data packets or messages via individual (one or more) of minimum k node disjoint communication paths, but the other remaining paths can also be used. The major contribution of the paper is mathematical expressions for k-connectivity probability

    Connectivity analysis in clustered wireless sensor networks powered by solar energy

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Emerging 5G communication paradigms, such as machine-type communication, have triggered an explosion in ad-hoc applications that require connectivity among the nodes of wireless networks. Ensuring a reliable network operation under fading conditions is not straightforward, as the transmission schemes and the network topology, i.e., uniform or clustered deployments, affect the performance and should be taken into account. Moreover, as the number of nodes increases, exploiting natural energy sources and wireless energy harvesting (WEH) could be the key to the elimination of maintenance costs while also boosting immensely the network lifetime. In this way, zero-energy wireless-powered sensor networks (WPSNs) could be achieved, if all components are powered by green sources. Hence, designing accurate mathematical models that capture the network behavior under these circumstances is necessary to provide a deeper comprehension of such networks. In this paper, we provide an analytical model for the connectivity in a large-scale zero-energy clustered WPSN under two common transmission schemes, namely, unicast and broadcast. The sensors are WEH-enabled, while the network components are solar-powered and employ a novel energy allocation algorithm. In our results, we evaluate the tradeoffs among the various scenarios via extensive simulations and identify the conditions that yield a fully connected zero-energy WPSN.Peer ReviewedPostprint (author's final draft

    Distributed Estimation and Control of Algebraic Connectivity over Random Graphs

    Full text link
    In this paper we propose a distributed algorithm for the estimation and control of the connectivity of ad-hoc networks in the presence of a random topology. First, given a generic random graph, we introduce a novel stochastic power iteration method that allows each node to estimate and track the algebraic connectivity of the underlying expected graph. Using results from stochastic approximation theory, we prove that the proposed method converges almost surely (a.s.) to the desired value of connectivity even in the presence of imperfect communication scenarios. The estimation strategy is then used as a basic tool to adapt the power transmitted by each node of a wireless network, in order to maximize the network connectivity in the presence of realistic Medium Access Control (MAC) protocols or simply to drive the connectivity toward a desired target value. Numerical results corroborate our theoretical findings, thus illustrating the main features of the algorithm and its robustness to fluctuations of the network graph due to the presence of random link failures.Comment: To appear in IEEE Transactions on Signal Processin
    • …
    corecore