24 research outputs found

    Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

    Get PDF
    Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des donnĂ©es, le trafic de donnĂ©es mobiles a augmentĂ© de 4000 fois au cours des 10 derniĂšres annĂ©es et prĂšs de 400millions fois au cours des 15 derniĂšres annĂ©es. Les rĂ©seaux cellulaires homogĂšnes rencontrent de plus en plus de difficultĂ©s Ă  gĂ©rer l’énorme trafic de donnĂ©es mobiles et Ă  assurer un dĂ©bit plus Ă©levĂ© et une meilleure qualitĂ© d’expĂ©rience pour les utilisateurs.Ces difficultĂ©s sont essentiellement liĂ©es au spectre disponible et Ă  la capacitĂ© du rĂ©seau.L’industrie de tĂ©lĂ©communication doit relever ces dĂ©fis et en mĂȘme temps doit garantir un modĂšle Ă©conomique pour les opĂ©rateurs qui leur permettra de continuer Ă  investir pour rĂ©pondre Ă  la demande croissante et rĂ©duire l’empreinte carbone due aux communications mobiles. Les rĂ©seaux cellulaires hĂ©tĂ©rogĂšnes (HetNets), composĂ©s de stations de base macro et de diffĂ©rentes stations de base de faible puissance,sont considĂ©rĂ©s comme la solution clĂ© pour amĂ©liorer l’efficacitĂ© spectrale par unitĂ© de surface et pour Ă©liminer les trous de couverture. Dans de tels rĂ©seaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gĂ©rer les interfĂ©rences afin de gagner en performance. Comme la diffĂ©rence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptĂ©e dans les HetNets. Une technique basĂ©e sur des offsets individuelles par cellule Offset(CIO) est donc nĂ©cessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutĂ©e Ă  la valeur moyenne de la puissance reçue du signal de rĂ©fĂ©rence(RSRP) mesurĂ©e par le mobile et peut donc induire Ă  un changement d’attachement vers diffĂ©rents eNodeB. Comme les stations de bases dans les rĂ©seaux cellulaires LTE utilisent les mĂȘmes sous-bandes de frĂ©quences, les mobiles peuvent connaĂźtre une forte interfĂ©rence intercellulaire, en particulier en bordure de cellules. Par consĂ©quent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interfĂ©rence entre les cellules. Pour attĂ©nuer la forte interfĂ©rence intercellulaire, les ressources, en termes de temps, frĂ©quence et puissance d’émission, devraient ĂȘtre allouĂ©s efficacement. Un modĂšle pour chaque dimension est calculĂ© pour permettre en particulier aux utilisateurs en bordure de cellule de bĂ©nĂ©ficier d’un dĂ©bit plus Ă©levĂ© et d’une meilleure qualitĂ© de l’expĂ©rience. L’optimisation de tous ces paramĂštres peut Ă©galement offrir un gain en consommation d’énergie. Dans cette thĂšse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les rĂ©seaux cellulaires LTE maximisant une fonction d’utilitĂ© du rĂ©seau qui peut ĂȘtre choisie de maniĂšre adĂ©quate.Notre solution, basĂ©e sur la thĂ©orie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance Ă  appliquer au niveau temporel et frĂ©quentiel pour chaque cellule. Nous prĂ©sentons des rĂ©sultats des simulations effectuĂ©es pour illustrer le gain de performance important apportĂ© par cette optimisation. Nous obtenons une significative hausse dans le dĂ©bit moyen et le dĂ©bit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en Ă©nergie. Ce travail aborde des dĂ©fis pour l’industrie des tĂ©lĂ©coms et en tant que tel, un prototype de l’optimiseur a Ă©tĂ© implĂ©mentĂ© en se basant sur un trafic HetNets Ă©mulĂ©

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin

    Mobility Analysis and Management for Heterogeneous Networks

    Get PDF
    The global mobile data traffic has increased tremendously in the last decade due to the technological advancement in smartphones. Their endless usage and bandwidth-intensive applications will saturate current 4G technologies and has motivated the need for concrete research in order to sustain the mounting data traffic demand. In this regard, the network densification has shown to be a promising direction to cope with the capacity demands in future 5G wireless networks. The basic idea is to deploy several low power radio access nodes called small cells closer to the users on the existing large radio foot print of macrocells, and this constitutes a heterogeneous network (HetNet). However, there are many challenges that operators face with the dense HetNet deployment. The mobility management becomes a challenging task due to triggering of frequent handovers when a user moves across the network coverage areas. When there are fewer users associated in certain small cells, this can lead to significant increase in the energy consumption. Intelligently switching them to low energy consumption modes or turning them off without seriously degrading user performance is desirable in order to improve the energy savings in HetNets. This dynamic power level switching in the small cells, however, may cause unnecessary handovers, and it becomes important to ensure energy savings without compromising handover performance. Finally, it is important to evaluate mobility management schemes in real network deployments, in order to find any problems affecting the quality of service (QoS) of the users. The research presented in this dissertation aims to address these challenges. First, to tackle the mobility management issue, we develop a closed form, analytical model to study the handover and ping-pong performance as a function of network parameters in the small cells, and verify its performance using simulations. Secondly, we incorporate fuzzy logic based game-theoretic framework to address and examine the energy efficiency improvements in HetNets. In addition, we design fuzzy inference rules for handover decisions and target base station selection is performed through a fuzzy ranking technique in order to enhance the mobility robustness, while also considering energy/spectral efficiency. Finally, we evaluate the mobility performance by carrying out drive test in an existing 4G long term evolution (LTE) network deployment using software defined radios (SDR). This helps to obtain network quality information in order to find any problems affecting the QoS of the users

    A Planning and Optimization Framework for Hybrid Ultra-Dense Network Topologies

    Get PDF
    The deployment of small cells has been a critical upgrade in Fourth Generation (4G) mobile networks as they provide macrocell traffic offloading gains, improved spectrum reuse and reduce coverage holes. The need for small cells will be even more critical in Fifth Generation (5G) networks due to the introduction of higher spectrum bands, which necessitate denser network deployments to support larger traffic volumes per unit area. A network densification scenario envisioned for evolved fourth and fifth generation networks is the deployment of Ultra-Dense Networks (UDNs) with small cell site densities exceeding 90 sites/km2 (or inter-site distances of less than 112 m). The careful planning and optimization of ultra-dense networks topologies have been known to significantly improve the achievable performance compared to completely random (unplanned) ultra-dense network deployments by various third-part stakeholders (e.g. home owners). However, these well-planned and optimized ultra-dense network deployments are difficult to realize in practice due to various constraints, such as limited or no access to preferred optimum small cell site locations in a given service area. The hybrid ultra-dense network topologies provide an interesting trade-off, whereby, an ultra-dense network may constitute a combination of operator optimized small cell deployments that are complemented by random small cell deployments by third-parties. In this study, an ultra-dense network multiobjective optimization framework and post-deployment power optimization approach are developed for realization and performance comparison of random, optimized and hybrid ultra-dense network topologies in a realistic urban case study area. The results of the case study demonstrate how simple transmit power optimization enable hybrid ultra-dense network topologies to achieve performance almost comparable to optimized topologies whilst also providing the convenience benefits of random small cell deployments

    Self-optimization of coverage and capacity based on a fuzzy neural network with cooperative reinforcement learning

    Get PDF
    Self-organization is a key concept in long-term evolution (LTE) systems to reduce capital and operational expenditures (CAPEX and OPEX). Self-optimization of coverage and capacity, which allows the system to periodically and automatically adjust the key radio frequency (RF) parameters through intelligent algorithms, is one of the most important tasks in the context of self-organizing networks (SON). In this paper, we propose self-optimization of antenna tilt and power using a fuzzy neural network optimization based on reinforcement learning (RL-FNN). In our approach, a central control mechanism enables cooperation-based learning by allowing distributed SON entities to share their optimization experience, represented as the parameters of learning method. Specifically, SON entities use cooperative Q-learning and reinforced back-propagation method to acquire and adjust their optimization experience. To evaluate the coverage and capacity performance of RL-FNN, we analyze cell-edge performance and cell-center performance indicators jointly across neighboring cells and specifically consider the difference in load distribution in a given region. The simulation results show that RL-FNN performs significantly better than the best fixed configuration proposed in the literature. Furthermore, this is achieved with significantly lower energy consumption. Finally, since each self-optimization round completes in less than a minute, RL-FNN can meet the need of practical applications of self-optimization in a dynamic environment

    Cell identity allocation and optimisation of handover parameters in self-organised LTE femtocell networks

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial ful lment of the requirements for the degree of Doctor of PhilosophyFemtocell is a small cellular base station used by operators to extend indoor service coverage and enhance overall network performance. In Long Term Evolution (LTE), femtocell works under macrocell coverage and combines with the macrocell to constitute the two-tier network. Compared to the traditional single-tier network, the two-tier scenario creates many new challenges, which lead to the 3rd Generation Partnership Project (3GPP) implementing an automation technology called Self-Organising Network (SON) in order to achieve lower cost and enhanced network performance. This thesis focuses on the inbound and outbound handovers (handover between femtocell and macrocell); in detail, it provides suitable solutions for the intensity of femtocell handover prediction, Physical Cell Identity (PCI) allocation and handover triggering parameter optimisation. Moreover, those solutions are implemented in the structure of SON. In order to e ciently manage radio resource allocation, this research investigates the conventional UE-based prediction model and proposes a cell-based prediction model to predict the intensity of a femtocell's handover, which overcomes the drawbacks of the conventional models in the two-tier scenario. Then, the predictor is used in the proposed dynamic group PCI allocation approach in order to solve the problem of PCI allocation for the femtocells. In addition, based on SON, this approach is implemented in the structure of a centralised Automated Con guration of Physical Cell Identity (ACPCI). It overcomes the drawbacks of the conventional method by reducing inbound handover failure of Cell Global Identity (CGI). This thesis also tackles optimisation of the handover triggering parameters to minimise handover failure. A dynamic hysteresis-adjusting approach for each User Equipment (UE) is proposed, using received average Reference Signal-Signal to Interference plus Noise Ratio (RS-SINR) of the UE as a criterion. Furthermore, based on SON, this approach is implemented in the structure of hybrid Mobility Robustness Optimisation (MRO). It is able to off er the unique optimised hysteresis value to the individual UE in the network. In order to evaluate the performance of the proposed approach against existing methods, a System Level Simulation (SLS) tool, provided by the Centre for Wireless Network Design (CWiND) research group, is utilised, which models the structure of two-tier communication of LTE femtocell-based networks
    corecore