4,092 research outputs found

    Coverage Probability of 3D Mobile UAV Networks

    Full text link
    In this paper, we consider a network of multiple unmanned aerial vehicles (UAVs) where a given number of UAVs are placed at three-dimensional (3D) locations in a finite circular disk shaped region to serve a reference ground user equipment (UE) located at its center. Herein, a serving UAV is assumed to be located at fixed altitude which communicates with the reference UE. All the other UAVs in the network are designated as interfering UAVs to the UE and are assumed to have 3D mobility. To characterize the 3D UAV movement process, we hereby propose an effective 3D mobility model based on the mixed random waypoint mobility (RWPM) and uniform mobility (UM) models in the vertical and spatial directions. Further, considering the proposed 3D mobility model, we first characterize the interference received at reference UE, and then evaluate its coverage probability under Nakagami-m fading. We quantify the achievable performance gains for the ground UE under various system and channel conditions. Moreover, we corroborate our analytical results through simulations.Comment: 5 pages, 4 figure

    Tutorial on UAV: A Blue Sky View on Wireless Communication

    Full text link
    The growing use of Unmanned Aerial Vehicles (UAVs) for various applications requires ubiquitous and reliable connectivity for safe control and data exchange between these devices and ground terminals. Depending on the application, UAV-mounted wireless equipment can either be an aerial user equipment (AUE) that co-exists with the terrestrial users, or it can be a part of wireless infrastructure providing a range of services to the ground users. For instance, AUE can be used for real-time search and rescue and Aerial Base Station (ABS) can enhance coverage, capacity and energy efficiency of wireless networks. In both cases, UAV-based solutions are scalable, mobile, fast to deploy. However, several technical challenges have to be addressed. In this work, we present a tutorial on wireless communication with UAVs, taking into account a wide range of potential applications. The main goal of this work is to provide a complete overview of the main scenarios (AUE and ABS), channel and performance models, compare them, and discuss open research points. This work gives a comprehensive overview of the research done until now and depicts a comprehensive picture to foster new ideas and solutions while avoiding duplication of past work. We start by discussing the open challenges of wireless communication with UAVs. To give answers to the posed questions, we focus on the UAV communication basics, mainly providing the necessary channel modeling background and giving guidelines on how various channel models should be used. Next, theoretical, simulation- and measurement-based approaches, to address the key challenges for AUE usage, are presented. Moreover, in this work, we aim to provide a comprehensive overview on how UAV-mounted equipment can be used as a part of a communication network. Based on the theoretical analysis, we show how various network parameters can be optimized.Comment: 42 pages, 32 Figure

    Reinforcement Learning in Multiple-UAV Networks: Deployment and Movement Design

    Full text link
    A novel framework is proposed for quality of experience (QoE)-driven deployment and dynamic movement of multiple unmanned aerial vehicles (UAVs). The problem of joint non-convex three-dimensional (3D) deployment and dynamic movement of the UAVs is formulated for maximizing the sum mean opinion score (MOS) of ground users, which is proved to be NP-hard. In the aim of solving this pertinent problem, a three-step approach is proposed for attaining 3D deployment and dynamic movement of multiple UAVs. Firstly, genetic algorithm based K-means (GAK-means) algorithm is utilized for obtaining the cell partition of the users. Secondly, Q-learning based deployment algorithm is proposed, in which each UAV acts as an agent, making their own decision for attaining 3D position by learning from trial and mistake. In contrast to conventional genetic algorithm based learning algorithms, the proposed algorithm is capable of training the direction selection strategy offline. Thirdly, Q-learning based movement algorithm is proposed in the scenario that the users are roaming. The proposed algorithm is capable of converging to an optimal state. Numerical results reveal that the proposed algorithms show a fast convergence rate after a small number of iterations. Additionally, the proposed Q-learning based deployment algorithm outperforms K-means algorithms and Iterative-GAKmean (IGK) algorithms with a low complexity

    Cognitive UAV Communication via Joint Maneuver and Power Control

    Full text link
    This paper investigates a new scenario of spectrum sharing between unmanned aerial vehicle (UAV) and terrestrial wireless communication, in which a cognitive/secondary UAV transmitter communicates with a ground secondary receiver (SR), in the presence of a number of primary terrestrial communication links that operate over the same frequency band. We exploit the UAV's mobility in three-dimensional (3D) space to improve its cognitive communication performance while controlling the co-channel interference at the primary receivers (PRs), such that the received interference power at each PR is below a prescribed threshold termed as interference temperature (IT). First, we consider the quasi-stationary UAV scenario, where the UAV is placed at a static location during each communication period of interest. In this case, we jointly optimize the UAV's 3D placement and power control to maximize the SR's achievable rate, subject to the UAV's altitude and transmit power constraints, as well as a set of IT constraints at the PRs to protect their communications. Next, we consider the mobile UAV scenario, in which the UAV is dispatched to fly from an initial location to a final location within a given task period. We propose an efficient algorithm to maximize the SR's average achievable rate over this period by jointly optimizing the UAV's 3D trajectory and power control, subject to the additional constraints on UAV's maximum flying speed and initial/final locations. Finally, numerical results are provided to evaluate the performance of the proposed designs for different scenarios, as compared to various benchmark schemes. It is shown that in the quasi-stationary scenario the UAV should be placed at its minimum altitude while in the mobile scenario the UAV should adjust its altitude along with horizontal trajectory, so as to maximize the SR's achievable rate in both scenarios.Comment: 16 pages,11 figures, accepted by IEEE Transactions on Communication

    MmWave UAV Networks with Multi-cell Association: Performance Limit and Optimization

    Full text link
    This paper aims to exploit the fundamental limits on the downlink coverage and spatial throughput performances of a cellular network comprised of a tier of unmanned aerial vehicle (UAV) base stations (BSs) using the millimeter wave (mmWave) band and a tier of ground BSs using the ultra high frequency (UHF) band. To reduce handover signaling overhead, the ground BSs take charge of control signaling delivery whereas the UAVs are in charge of payload data transmission so that users need to be simultaneously associated with a ground BS and a UAV in this network with a control-data plane-split architecture. We first propose a three-dimensional (3D) location distribution model of the UAVs using stochastic geometry which is able to generally characterize the positions of the UAVs in the sky. Using this 3D distribution model of UAVs, two performance metrics, i.e., multi-cell coverage probability and volume spectral efficiency, are proposed. Their explicit low-complexity expressions are derived and their upper limits are found when each of the UAVs and ground BSs is equipped with a massive antenna array. We further show that the multi-cell coverage probability and the volume spectral efficiency can be maximized by optimally deploying and positioning the UAVs in the sky and thereby their fundamental maximal limits are found. These important analytical findings are validated by numerical simulations.Comment: 17pages, 1 table, 8 figures, journal submissio

    Spatial Configuration of Agile Wireless Networks with Drone-BSs and User-in-the-loop

    Full text link
    Agile networking can reduce over-engineering, costs, and energy waste. Towards that end, it is vital to exploit all degrees of freedom of wireless networks efficiently, so that service quality is not sacrificed. In order to reap the benefits of flexible networking, we propose a spatial network configuration scheme (SNC), which can result in efficient networking; both from the perspective of network capacity, and profitability. First, SNC utilizes the drone-base-stations (drone-BSs) to configure access points. Drone-BSs are shifting paradigms of heterogeneous wireless networks by providing radically flexible deployment opportunities. On the other hand, their limited endurance and potential high cost increase the importance of utilizing drone-BSs efficiently. Therefore, secondly, user mobility is exploited via user-in-the-loop (UIL), which aims at influencing users' mobility by offering incentives. The proposed uncoordinated SNC is a computationally efficient method, yet, it may be insufficient to exploit the synergy between drone-BSs and UIL. Hence, we propose joint SNC, which increases the performance gain along with the computational cost. Finally, semi-joint SNC combines benefits of joint SNC, with computational efficiency. Numerical results show that semi-joint SNC is two orders of magnitude times faster than joint SNC, and more than 15 percent profit can be obtained compared to conventional systems.Comment: To appear in IEEE Transactions on Wireless Communication

    Codebook-Based Beam Tracking for Conformal ArrayEnabled UAV MmWave Networks

    Full text link
    Millimeter wave (mmWave) communications can potentially meet the high data-rate requirements of unmanned aerial vehicle (UAV) networks. However, as the prerequisite of mmWave communications, the narrow directional beam tracking is very challenging because of the three-dimensional (3D) mobility and attitude variation of UAVs. Aiming to address the beam tracking difficulties, we propose to integrate the conformal array (CA) with the surface of each UAV, which enables the full spatial coverage and the agile beam tracking in highly dynamic UAV mmWave networks. More specifically, the key contributions of our work are three-fold. 1) A new mmWave beam tracking framework is established for the CA-enabled UAV mmWave network. 2) A specialized hierarchical codebook is constructed to drive the directional radiating element (DRE)-covered cylindrical conformal array (CCA), which contains both the angular beam pattern and the subarray pattern to fully utilize the potential of the CA. 3) A codebook-based multiuser beam tracking scheme is proposed, where the Gaussian process machine learning enabled UAV position/attitude predication is developed to improve the beam tracking efficiency in conjunction with the tracking-error aware adaptive beamwidth control. Simulation results validate the effectiveness of the proposed codebook-based beam tracking scheme in the CA-enabled UAV mmWave network, and demonstrate the advantages of CA over the conventional planner array in terms of spectrum efficiency and outage probability in the highly dynamic scenarios

    On-Demand Deployment of Multiple Aerial Base Stations for Traffic Offloading and Network Recovery

    Full text link
    Unmanned aerial vehicles (UAVs) are being utilized for a wide spectrum of applications in wireless networks leading to attractive business opportunities. In the case of abrupt disruption to existing cellular network operation or infrastructure, e.g., due to an unexpected surge in user demand or a natural disaster, UAVs can be deployed to provide instant recovery via temporary wireless coverage in designated areas. A major challenge is to determine efficiently how many UAVs are needed and where to position them in a relatively large 3D search space. To this end, we formulate the problem of 3D deployment of a fleet of UAVs as a mixed integer linear program, and present a greedy approach that mimics the optimal behavior assuming a grid composed of a finite set of possible UAV locations. In addition, we propose and evaluate a novel low complexity algorithm for multiple UAV deployment in a continuous 3D space, based on an unsupervised learning technique that relies on the notion of electrostatics with repulsion and attraction forces. We present performance results for the proposed algorithm as a function of various system parameters and demonstrate its effectiveness compared to the close-to-optimal greedy approach and its superiority compared to recent related work from the literature

    Survey of Important Issues in UAV Communication Networks

    Full text link
    Unmanned Aerial Vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of Mobile Ad Hoc Networks (MANETs), and Vehicular Ad Hoc Networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic; have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software Defined Networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network leads to the requirement of seamless handovers where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute towards greening of the network. This article surveys the work done towards all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.Comment: arXiv admin note: substantial text overlap with arXiv:1304.3904 by other author

    Design Challenges of Multi-UAV Systems in Cyber-Physical Applications: A Comprehensive Survey, and Future Directions

    Full text link
    Unmanned Aerial Vehicles (UAVs) have recently rapidly grown to facilitate a wide range of innovative applications that can fundamentally change the way cyber-physical systems (CPSs) are designed. CPSs are a modern generation of systems with synergic cooperation between computational and physical potentials that can interact with humans through several new mechanisms. The main advantages of using UAVs in CPS application is their exceptional features, including their mobility, dynamism, effortless deployment, adaptive altitude, agility, adjustability, and effective appraisal of real-world functions anytime and anywhere. Furthermore, from the technology perspective, UAVs are predicted to be a vital element of the development of advanced CPSs. Therefore, in this survey, we aim to pinpoint the most fundamental and important design challenges of multi-UAV systems for CPS applications. We highlight key and versatile aspects that span the coverage and tracking of targets and infrastructure objects, energy-efficient navigation, and image analysis using machine learning for fine-grained CPS applications. Key prototypes and testbeds are also investigated to show how these practical technologies can facilitate CPS applications. We present and propose state-of-the-art algorithms to address design challenges with both quantitative and qualitative methods and map these challenges with important CPS applications to draw insightful conclusions on the challenges of each application. Finally, we summarize potential new directions and ideas that could shape future research in these areas
    • …
    corecore