164 research outputs found

    Enhancing Received Signal Strength-Based Localization through Coverage Hole Detection and Recovery

    Get PDF
    In wireless sensor networks (WSNs), Radio Signal Strength Indicator (RSSI)-based localization techniques have been widely used in various applications, such as intrusion detection, battlefield surveillance, and animal monitoring. One fundamental performance measure in those applications is the sensing coverage of WSNs. Insufficient coverage will significantly reduce the effectiveness of the applications. However, most existing studies on coverage assume that the sensing range of a sensor node is a disk, and the disk coverage model is too simplistic for many localization techniques. Moreover, there are some localization techniques of WSNs whose coverage model is non-disk, such as RSSI-based localization techniques. In this paper, we focus on detecting and recovering coverage holes of WSNs to enhance RSSI-based localization techniques whose coverage model is an ellipse. We propose an algorithm inspired by Voronoi tessellation and Delaunay triangulation to detect and recover coverage holes. Simulation results show that our algorithm can recover all holes and can reach any set coverage rate, up to 100% coverage

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Wearable Fall Detection System based on LoRa LPWAN Technology

    Get PDF
    Several technological solutions now available in the market offer the possibility of increasing the independent life of people who by age or pathologies otherwise need assistance. In particular, internet-connected wearable solutions are of considerable interest, as they allow continuous monitoring of the user. However, their use poses different challenges, from the real usability of a device that must still be worn to the performance achievable in terms of radio connectivity and battery life. The acceptability of a technology solution, by a user who would still benefit from its use, is in fact often conditioned by practical problems that impact the person’s normal lifestyle. The technological choices adopted in fact strongly determine the success of the proposed solution, as they may imply limitations both to the person who uses it and to the achievable performance. In this document, targeting the case of a fall detection sensor based on a pair of sensorized shoes, the effectiveness of a real implementation of an Internet of Things technology is examined. It is shown how alarming events, generated in a metropolitan context, are effectively sent to a supervision system through Low Power Wide Area Network technology without the need for a portable gateway. The experimental results demonstrate the effectiveness of the chosen technology, which allows the user to take advantage of the support of a wearable sensor without being forced to substantially change his lifestyle

    A stateless opportunistic routing protocol for underwater sensor networks

    Get PDF
    Routing packets in Underwater Sensor Networks (UWSNs) face different challenges, the most notable of which is perhaps how to deal with void communication areas. While this issue is not addressed in some underwater routing protocols, there exist some partially state-full protocols which can guarantee the delivery of packets using excessive communication overhead. However, there is no fully stateless underwater routing protocol, to the best of our knowledge, which can detect and bypass trapped nodes. A trapped node is a node which only leads packets to arrive finally at a void node. In this paper, we propose a Stateless Opportunistic Routing Protocol (SORP), in which the void and trapped nodes are locally detected in the different area of network topology to be excluded during the routing phase using a passive participation approach. SORP also uses a novel scheme to employ an adaptive forwarding area which can be resized and replaced according to the local density and placement of the candidate forwarding nodes to enhance the energy efficiency and reliability. We also make a theoretical analysis on the routing performance in case of considering the shadow zone and variable propagation delays. The results of our extensive simulation study indicate that SORP outperforms other protocols regarding the routing performance metrics

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    A pragmatic approach to area coverage in hybrid wireless sensor networks

    Full text link
    Success of Wireless Sensor Networks (WSN) largely depends on whether the deployed network can provide desired area coverage with acceptable network lifetime. In hostile or harsh environments such as enemy territories in battlefields, fire or chemical spills, it is impossible to deploy the sensor nodes in a predeter- mined regular topology to guarantee adequate coverage. Random deployment is thus more practical and feasible for large target areas. On the other hand, random deployment of sensors is highly susceptible to the occurrence of coverage holes in the target area. A potential solution for enhancing the existing coverage achieved by random deployments involves the use of mobility capable sensors that would help fill the coverage holes. This thesis seeks to address the problem of determining the current coverage achieved by the non-deterministic deployment of static sensor nodes and subsequently enhancing the coverage using mobile sensors. The main contributions of this dissertation are the design and evaluation of MAPC (Mobility Assisted Probabilistic Coverage), a distributed protocol for ensuring area coverage in hybrid wireless sensor networks. The primary contribution is a pragmatic approach to sensor coverage and maintenance that we hope would lower the technical barriers to its field deployment. Most of the assumptions made in the MAPC protocol are realistic and implementable in real-life applications e.g., practical boundary estimation, coverage calculations based on a realistic sensing model, and use of movement triggering thresholds based on real radio characteristics etc. The MAPC is a comprehensive three phase protocol. In the first phase, the static sensors calculate the area coverage using the Probabilistic Coverage Algorithm (PCA). This is a deviation from the idealistic assumption used in the binary detection model, wherein a sensor can sense accurately within a well defined (usually circular) region. Static sensors execute the PCA algorithm, in a distributed way, to identify any holes in the coverage. In the second phase, MAPC scheme moves the mobile nodes in an optimal manner to fill these uncovered locations. For different types of initial deployments, the proposed movement algorithms consume only 30-40% of the energy consumed by the basic virtual force algorithm. In addition, this thesis addresses the problem of coverage loss due to damaged and energy depleted nodes. The problem has been formulated as an Integer Linear Program and implementable heuristics are developed that perform close to optimal solutions. By replacing in-operational nodes in phase three, MAPC scheme ensures the continuous operation of the WSN. Experiments with real mote hardware were conducted to validate the boundary and coverage estimation part of the MAPC protocol. Extensive discrete event simulations (using NS2) were also performed for the complete MAPC protocol and the results demonstrate that MAPC can enhance and maintain the area coverage by efficiently moving mobile sensor nodes to strategic positions in the uncovered area
    • 

    corecore