61 research outputs found

    Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey

    Full text link
    A Vehicular Ad hoc Network (VANET) is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Beaconing approaches is an important research challenge in high mobility vehicular networks with enabling safety applications. In this article, we perform a survey and a comparative study of state-of-the-art adaptive beaconing approaches in VANET, that explores the main advantages and drawbacks behind their design. The survey part of the paper presents a review of existing adaptive beaconing approaches such as adaptive beacon transmission power, beacon rate adaptation, contention window size adjustment and Hybrid adaptation beaconing techniques. The comparative study of the paper compares the representatives of adaptive beaconing approaches in terms of their objective of study, summary of their study, the utilized simulator and the type of vehicular scenario. Finally, we discussed the open issues and research directions related to VANET adaptive beaconing approaches.Ghafoor, KZ.; Lloret, J.; Abu Bakar, K.; Sadiq, AS.; Ben Mussa, SA. (2013). Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey. Wireless Personal Communications. 73(3):885-912. doi:10.1007/s11277-013-1222-9S885912733ITS-Standards (1996) Intelligent transportation systems, U.S. Department of Transportation, http://www.standards.its.dot.gov/about.aspCheng, L., Henty, B., Stancil, D., Bai, F., & Mudalige, P. (2005). Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 Ghz dedicated short range communication (DSRC) frequency band. IEEE Transactions on Selected Areas in Communications, 25(8), 1501–1516.van Eenennaam, E., Wolterink, K., Karagiannis, G., & Heijenk, G. (2009). Exploring the solution space of beaconing in vanets. In Proceedings of the 2009 IEEE international vehicular networking conference, Tokyo (pp. 1–8).Torrent-Moreno, M. (2007). Inter-vehicle communications: Assessing information dissemination under safety constraints. In Proceedings of the 2007 IEEE conference wireless on demand network systems and services, Austria (pp. 59–64).Lloret, J., Canovas, A., Catalá, A., & Garcia, M. (2012). Group-based protocol and mobility model for vanets to offer internet access. Journal of Network and Computer Applications 2224–2245 doi: 10.1016j.jnca.2012.02.009 .Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.Fukui, R., Koike, H., & Okada, H. (2002). Dynamic integrated transmission control(ditrac) over inter-vehicle communications. In Proceedings of the 2002 IEEE vehicular technology conference, Birmingham (pp. 483–487).Schmidt, R., Leinmuller, T., Schoch, E., Kargl, F., & Schafer, G. (2010). Exploration of adaptive beaconing for efficient intervehicle safety communication. IEEE Network, 24(1), 14–19.Ghafoor, K., Bakar, K., van Eenennaam, E., Khokhar, R., Gonzalez, A. A fuzzy logic approach to beaconing for vehicular ad hoc networks, Accepted for publication in Telecommunication Systems Journal.Ghafoor, K., & Bakar, K. (2010). A novel delay and reliability aware inter vehicle routing protocol. Network Protocols and Algorithms, 2(2), 66–88.Mittag, J., Thomas, F., Härri, J., & Hartenstein, H. (2009). A comparison of single-and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehicular internetworking, Beijing (pp. 69–78).Sommer, C., Tonguz, O., & Dressler, F. (2010). Adaptive beaconing for delay-sensitive and congestion-aware traffic information systems. In Proceedings of the 2010 IEEE international vehicular networking conference (VNC), New Jersey (pp. 1–8).Guan, X., Sengupta, R., Krishnan, H., & Bai, F. (2007). A feedback-based power control algorithm design for vanet. In Proceedings of the 2007 IEEE international conference on mobile networking for vehicular environments, USA (pp. 67–72).AL-Hashimi, H., Bakar, K., & Ghafoor, K. (2011). Inter-domain proxy mobile ipv6 based vehicular network. Network Protocols and Algorithms, 2(4), 1–15.Rawat, D., Popescu, D., Yan, G., & Olariu, S. (2011). Enhancing vanet performance by joint adaptation of transmission power and contention window size. Transactions on Parallel and Distributed Systems, 22(9), 1528–1535.European-ITS (2009) Eits-technical report 102 638 v1.1.1, European Telecommunications Standards Institute (ETSI), http://www.etsi.org/WebSite/homepage.aspxNHTSA, I. Joint program office”, report to congress on the national highway traffic safety administration its program, program progress during 1992–1996 and strategic plan for 1997–2002, US Department of Transportation, Washington, DC.Godbole, D., Sengupta, R., Misener, J., Kourjanskaia, N., & Michael, J. (1998). Benefit evaluation of crash avoidance systems. Transportation Research, 1621(1), 1–9.Reinders, R., van Eenennaam, M., Karagiannis, G., & Heijenk, G. (2004). Contention window analysis for beaconing in vanets. In Proceedings of the 2011 IEEE international conference on wireless communications and mobile computing (IWCMC), Istanbul (pp. 1481–1487).Yang, L., Guo, J., & Wu, Y. (2008). Channel adaptive one hop broadcasting for vanets. In Proceedings of the 2008 IEEE international conference on intelligent transportation systems, Beijing (pp. 369–374).Tseng, Y., Ni, S., Chen, Y., & Sheu, J. (2002). The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 8(2), 153–167.van Eenennaam, E. M., Karagiannis, G., & Heijenk, G. (2010). Towards scalable beaconing in vanets. In Proceedings of the 2010 ERCIM workshop on eMobility, Lulea (pp. 103–108).Ros, F., Ruiz, P., & Stojmenovic, I. (2012). Acknowledgment-based broadcast protocol for reliable and efficient data dissemination in vehicular ad-hoc networks. IEEE Transactions on Mobile Computing, 11(1), 33–46.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2006). Distributed fair transmit power adjustment for vehicular ad hoc networks. In Proceedings of the 2007 IEEE international conference on sensor and ad hoc communications and networks, Reston, VA (pp. 479–488).Artimy, M. (2007). Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 8(3), 400–412.Caizzone, G., Giacomazzi, P., Musumeci, L., & Verticale, G. (2005). A power control algorithm with high channel availability for vehicular ad hoc networks. In Proceedings of the 2005 IEEE international conference on communications, Seoul (pp. 3171–3176).Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2009). Vehicle-to-vehicle communication: Fair transmit power control for safety critical information. IEEE Transaction for Vehicular Technology, 58(7), 3684–3703.Torrent-Moreno, M., Schmidt-Eisenlohr, F., Fubler, H., & Hartenstein, H. (2006). Effects of a realistic channel model on packet forwarding in vehicular ad hoc networks. In Proceedings of the 2007 IEEE conference on wireless communications and networking, USA (pp. 385–391).NS, Network simulator (June 2011). http://nsnam.isi.edu/nsnam/index.php/MainPageNakagami, M. (1960). The m-distribution: A general formula of intensity distribution of rapid fadinge. In W. C. Hoffman (Ed.), Statistical method of radio propagation. New York: Pergamon Press.Narayanaswamy, S., Kawadia, V., Sreenivas, R., & Kumar, P. (2002). Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the compow protocol. In Proceedings of the 2002 European wireless conference next generation wireless networks: technologies, protocols, Italy (pp. 1–6).Cheng, P., Lee, K., Gerla, M., & Harri, J. (2010). Geodtn+ nav: Geographic dtn routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.Gomez, J., & Campbell, A. (2004). A case for variable-range transmission power control in wireless multihop networks. In Proceedings twenty-third annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 1425–1436).Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multihop wireless networks using transmit power adjustment. In Proceedings nineteenth annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 404–413).Artimy, M., Robertson, W., & Phillips, W. (2005). Assignment of dynamic transmission range based on estimation of vehicle density. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks, Germany (pp. 40–48).Samara, G., Ramadas, S., & Al-Salihy, W. (2010). Safety message power transmission control for vehicular ad hoc networks. Computer Science, 6(10), 1027–1032.Rezaei, S., Sengupta, R., Krishnan, H., Guan, X., & Student, P. (2008). Adaptive communication scheme for cooperative active safety system.Rezaei, S., Sengupta, R., Krishnan, H., & Guan, X. (2007). Reducing the communication required by dsrc-based vehicle safety systems. In Proceedings of the 2007 IEEE international conference on intelligent transportation systems, Bellevue, WA (pp. 361–366).Sommer, C., Tonguz, O., & Dressler, F. (2011). Traffic information systems: Efficient message dissemination via adaptive beaconing. IEEE Communications Magazine, 49(5), 173–179.Thaina, C., Nakorn, K., & Rojviboonchai, K. (2011). A study of adaptive beacon transmission on vehicular ad-hoc networks. In Proceeding of the 2011 IEEE 13th international conference on communication technology (ICCT), Vancouver (pp. 597–602).Boukerche, A., Rezende, C., & Pazzi, R. (2009). Improving neighbor localization in vehicular ad hoc networks to avoid overhead from periodic messages. In Proceedings of the 2009 IEEE global telecommunications conference, USA (pp. 1–6).Bai, F., Sadagopan, N., & Helmy, A. (2008). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In Proceedings of the 2003 22th annual joint conference of the IEEE computer and communications, USA (pp. 825–835).Nguyen, H., Bhawiyuga, A., & Jeong, H. (2012). A comprehensive analysis of beacon dissemination in vehicular networks. In Proceedings of the 75th IEEE vehicular technology conference, Korea (pp. 1–5).Djahel, S., & Ghamri-Doudane, Y. (2012). A robust congestion control scheme for fast and reliable dissemination of safety messages in vanets. In Proceeding of the 2012 IEEE conference wireless communications and networking, Paris, France (pp. 2264–2269).O. Technologies (Augast 2012) Opnet modeler, http://www.opnet.com/Huang, C., Fallah, Y., Sengupta, R., & Krishnan, H. (2010). Adaptive intervehicle communication control for cooperative safety systems. IEEE Network, 24(1), 6–13.OPNET (June 2012) Opnet modeler, http://www.opnet.com/Kerner, B. (2004). The physics of traffic: Empirical freeway pattern features, engineering applications, and theory. Berlin: Springer.Vinel, A., Vishnevsky, V., & Koucheryavy, Y. (2008). A simple analytical model for the periodic broadcasting in vehicular ad-hoc networks. In Proceedings of the 2008 IEEE international GLOBECOM workshops, Philadelphia, PA (pp. 1–5).Mariyasagayam, N., Menouar, H., & Lenardi, M. (2009). An adaptive forwarding mechanism for data dissemination in vehicular networks. In Proceedings of the 2009 IEEE Vehicular Networking Conference, Boston (pp. 1–5).Hung, C., Chan, H., & Wu, E. (2008). Mobility pattern aware routing for heterogeneous vehicular networks. In Proceedings of the 2008 international conference on wireless communications and networking, Las Vegas (pp. 2200–2205).Yang, K., Ou, S., Chen, H., & He, J. (2007). A multihop peer-communication protocol with fairness guarantee for ieee 802.16-based vehicular networks. IEEE Transactions on Vehicular Technology, 56(6), 3358–3370.Lequerica, I., Ruiz, P., & Cabrera, V. (2010). Improvement of vehicular communications by using 3G capabilities to disseminate control information. IEEE Network Magazine, 24(1), 32–38.Oh, D., Kim, P., Song, J., Jeon, S., & Lee, H. (2005). Design considerations of satellite-based vehicular broadband networks. IEEE Wireless Communications Magazine, 12(5), 91–97.Ko, Y., Sim, M., & Nekovee, M. (2006). Wi-fi based broadband wireless access for users on the road. BT Technology Journal, 24(2), 123–129.Choffnes, D., & Bustamante, F. (2005). An integrated mobility and traffic model for vehicular wireless networks. In Proceedings of the 2005 ACM international workshop on vehicular ad hoc networks, Cologne (pp. 69–78).TIGER (October 2010) Topologically integrated geographic encoding and referencing system, http://www.census.gov/geo/www/tiger/Mittag, J., Thomas, F., Harri, J., & Hartenstein, H. (2009). A comparison of single and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehiculaar internetworking, Beijing (pp. 69–78).Rappaport, T. (1996). Wireless communications: Principles and practice (2nd ed.). New Jersey: Prentice Hall PTR

    Intelligent and bandwidth-efficient medium access control protocols for IEEE 802.11p-based Vehicular Ad hoc Networks

    Get PDF
    Vehicle-to-Vehicle (V2V) technology aims to enable safer and more sophisticated transportation via the spontaneous formation of Vehicular Ad hoc Networks (VANETs). This type of wireless networks allows the exchange of kinematic and other data among vehicles, for the primary purpose of safer and more efficient driving, as well as efficient traffic management and other third-party services. Their infrastructure-less, unbounded nature allows the formation of dense networks that present a channel sharing issue, which is harder to tackle than in conventional WLANs. This thesis focuses on optimising channel access strategies, which is important for the efficient usage of the available wireless bandwidth and the successful deployment of VANETs. To start with, the default channel access control method for V2V is evaluated hardware via modifying the appropriate wireless interface Linux driver to enable finer on-the-fly control of IEEE 802.11p access control layer parameters. More complex channel sharing scenarios are evaluated via simulations and findings on the behaviour of the access control mechanism are presented. A complete channel sharing efficiency assessment is conducted, including throughput, fairness and latency measurements. A new IEEE 802.11p-compatible Q-Learning-based access control approach that improves upon the studied protocol is presented. The stations feature algorithms that “learn” how to act optimally in VANETs in order to maximise their achieved packet delivery and minimise bandwidth wastage. The feasibility of Q-Learning to be used as the base of selflearning protocols for IEEE 802.11p-based V2V communication access control in dense environments is investigated in terms of parameter tuning, necessary time of exploration, achieving latency requirements, scaling, multi-hop and accommodation of simultaneous applications. Additionally, the novel Collection Contention Estimation (CCE) mechanism for Q-Learning-based access control is presented. By embedding it on the Q-Learning agents, faster convergence, higher throughput, better service separation and short-term fairness are achieved in simulated network deployments. The acquired new insights on the network performance of the proposed algorithms can provide precise guidelines for efficient designs of practical, reliable, fair and ultra-low latency V2V communication systems for dense topologies. These results can potentially have an impact across a range of related areas, including various types of wireless networks and resource allocation for these, network protocol and transceiver design as well as QLearning applicability and considerations for correct use

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    A Framework for Quality of Service in Vehicle-to-Pedestrian Safety Communication

    Get PDF
    Vehicle-to-Everything (V2X) communication has emerged as an important mechanism to improve the safety and efficiency of road traffic. V2X communication encompasses Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Pedestrian (V2P) communication. Among these types, the V2P communication efforts continue to be in the preliminary stage and lack a rounded approach towards the development of V2P systems. V2P involves communication between vehicles and a wide variety of Vulnerable Road Users (VRUs), such as pedestrians, bicyclists, mopeds, etc. The V2X systems were originally developed only for V2V and V2I when solely the vehicle characteristics were in focus. However, effective V2P system design needs to consider the characteristics of VRUs. The differing characteristics of VRUs have given rise to many questions while adapting to the V2V communication model for the V2P system. This dissertation addresses three aspects pertaining to the development of the V2P safety system. The first aspect involves a systematic design of a V2P system using a holistic approach. This dissertation proposes a V2P design framework based on various categories of inputs that are required for the design of an effective V2P system. This framework improves the understanding of the V2P system requirements and helps make the design process more systematic. The second aspect is the network performance of the V2X network in the presence of a large number of VRUs. This dissertation proposes MC-COCO4V2P, which is an energy-efficient pedestrian clustering mechanism for network congestion mitigation. MC-COCO4V2P improves network performance by reducing the pedestrian-generated safety messages. It also improves the battery life of the pedestrian devices in the process. The third aspect involves the reliability of communication between a pair of a vehicle and a pedestrian that are on the verge of collision. This dissertation classifies such crucial communication as the one requiring the highest priority even among the exchange of critical safety messages. It proposes a mechanism enabling the surrounding nodes to reduce the communication priority temporarily. This results in preferred medium access for the pair resulting in higher Quality-of-Service (QoS) for the crucial communication.Die Kommunikation zwischen Verkehrsteilnehmern (V2X) hat sich zu einem wichtigen Mechanismus zur Verbesserung der Sicherheit und Effizienz des Straßenverkehrs entwickelt. Obwohl die V2X-Kommunikation prinzipiell die Kommunikation zwischen Fahrzeugen (V2V), zwischen Fahrzeug und Infrastruktur (V2I) sowie zwischen Fahrzeug und Fußgänger (V2P) umfasst, sind Ansätze zur V2P-Kommunikation weiterhin in einem sehr frühen Stadium und lassen einen umfassenden Ansatz für die Entwicklung von V2P-Systemen vermissen. V2P umfasst im Detail die Kommunikation zwischen Fahrzeugen und einer Vielzahl von gefährdeten Verkehrsteilnehmern (VRUs), wie beispielsweise Fußgänger, Radfahrer oder Mopeds. V2X-Systeme wurden ursprünglich nur für V2V- und V2I-Kommunikation entwickelt, wobei ausschließlich die Fahrzeugeigenschaften im Fokus standen. Ein effektives V2P-Systemdesign muss jedoch auch die Eigenschaften von VRUs berücksichtigen, die bei der Berücksichtigung der V2P-Kommunikation in einem V2X-System viele Fragen aufwerfen. Diese Dissertation befasst sich mit drei Aspekten im Zusammenhang mit der Entwicklung eines V2P-Systems. Der erste Aspekt betrifft die systematische Konzeption eines V2P-Systems nach einem ganzheitlichen Ansatz. Diese Dissertation schlägt einen V2P-Entwurfsrahmen vor, der auf verschiedenen Eingangsgrößen basiert, die für die Entwicklung eines effektiven V2P-Systems erforderlich sind. Dieser Entwurfsrahmen verbessert das Verständnis der V2P-Systemanforderungen und trägt dazu bei, den Entwurfsprozess systematischer zu gestalten. Der zweite Aspekt betrifft die Leistung des V2X-Netzes, wenn eine große Anzahl von VRUs präsent ist. Diese Dissertation schlägt hierfür MC-COCO4V2P vor, einen energieeffizienten Clustering-Mechanismus für Fußgänger zur Eindämmung der Netzüberlastung. MC-COCO4V2P verbessert die Netzleistung, indem die Anzahl der von Fußgängern generierten Sicherheitsmeldungen reduziert wird. Damit wird zudem die Batterielebensdauer der von den Fußgängern genutzten Geräte verbessert. Der dritte Aspekt betrifft die Zuverlässigkeit der Kommunikation zwischen einem Fahrzeug und einem Fußgänger, die kurz vor einem Zusammenstoß stehen. Diese Dissertation stuft eine so wichtige Kommunikation als diejenige ein, die selbst beim Austausch anderer kritischer Sicherheitsnachrichten die höchste Priorität bekommt. Es wird ein Mechanismus vorgeschlagen, der es den umgebenden Verkehrsteilnehmern ermöglicht, ihre Kommunikationspriorität vorübergehend zu verringern. Dies führt zu einem bevorzugten Medienzugriff für die durch eine Kollision gefährdeten Verkehrsteilnehmer, was zu einer höheren Dienstgüte (QoS) für deren Kommunikation führt.Pedestrians and bicyclists, also known as Vulnerable Road Users (VRUs), are one of the weakest components of Intelligent Transportation Systems from a safety perspective. However, with the advent of new communication technologies, VRU protection may no longer be dependent solely on the vehicle’s safety systems. VRUs may share their location information with the surrounding vehicles to increase awareness of their presence. Such communication among vehicles and VRUs is referred to as Vehicle-to-Pedestrian (V2P) communication. Although the V2P system may be built upon the existing Vehicle-to-Vehicle communication system, it has its own set of challenges, such as different VRU mobility characteristics, energy-constrained devices, and VRU density. Therefore, there needs to be a V2P system model which is adapted to the VRU characteristics. This dissertation tackles this challenge by proposing a framework that enables scalability, reliability, and energy efficiency for VRU communication

    Congestion Control in Vehicular Ad Hoc Networks

    Get PDF
    RÉSUMÉ Les réseaux Véhiculaires ad hoc (VANets) sont conçus pour permettre des communications sans fil fiables entre les nœuds mobiles à haute vitesse. Afin d'améliorer la performance des applications dans ce type de réseaux et garantir un environnement sûr et confortable pour ses utilisateurs, la Qualité de Service (QoS) doit être supportée dans ces réseaux. Le délai ainsi que les pertes de paquets sont deux principaux indicateurs de QoS qui augmentent de manière significative en raison de la congestion dans les réseaux. En effet, la congestion du réseau entraîne une saturation des canaux ainsi qu’une augmentation des collisions de paquets dans les canaux. Par conséquent, elle doit être contrôlée pour réduire les pertes de paquets ainsi que le délai, et améliorer les performances des réseaux véhiculaires. Le contrôle de congestion dans les réseaux VANets est une tâche difficile en raison des caractéristiques spécifiques des VANets, telles que la grande mobilité des nœuds à haute vitesse, le taux élevé de changement de topologie, etc. Le contrôle de congestion dans les réseaux VANets peut être effectué en ayant recours à une stratégie qui utilise l'un des paramètres suivants : le taux de transmission, la puissance de transmission, la priorisation et l’ordonnancement, ainsi que les stratégies hybrides. Les stratégies de contrôle de congestion dans les réseaux VANets doivent faire face à quelques défis tels que l'utilisation inéquitable des ressources, la surcharge de communication, le délai de transmission élevé, et l'utilisation inefficace de la bande passante, etc. Par conséquent, il est nécessaire de développer de nouvelles approches pour faire face à ces défis et améliorer la performance des réseaux VANets. Dans cette thèse, dans un premier temps, une stratégie de contrôle de congestion en boucle fermée est développée. Cette stratégie est une méthode de contrôle de congestion dynamique et distribuée qui détecte la congestion en mesurant le niveau d'utilisation du canal. Ensuite, la congestion est contrôlée en ajustant la portée et le taux de transmission qui ont un impact considérable sur la saturation du canal. Ajuster la portée et le taux de transmission au sein des VANets est un problème NP-difficile en raison de la grande complexité de la détermination des valeurs appropriées pour ces paramètres. Considérant les avantages de la méthode de recherche Tabou et son adaptabilité au problème, une méthode de recherche multi-objective est utilisée pour trouver une portée et un taux de transmission dans un délai raisonnable. Le délai et la gigue, fonctions multi-objectifs de l'algorithme Tabou, sont minimisés dans l'algorithme proposé. Par la suite, deux stratégies de contrôle de congestion en boucle ouverte sont proposées afin de réduire la congestion dans les canaux en utilisant la priorisation et l'ordonnancement des messages. Ces stratégies définissent la priorité pour chaque message en considérant son type de contenu (par exemple les messages d'urgence, de beacon, et de service), la taille des messages, et l’état du réseau (par exemple, les métriques de la vélocité, la direction, l'utilité, la distance, et la validité). L'ordonnancement des messages est effectué sur la base des priorités définies. De plus, comme seconde technique d'ordonnancement, une méthode de recherche Tabou est employée pour planifier les files d'attente de contrôle et de service des canaux de transmission dans un délai raisonnable. A cet effet, le délai et la gigue lors de l'acheminement des messages sont minimisés. Enfin, une stratégie localisée et centralisée qui utilise les ensembles RSU fixés aux intersections pour détecter et contrôler de la congestion est proposée. Cette stratégie regroupe tous les messages transférés entre les véhicules qui se sont arrêtés à une lumière de signalisation en utilisant les algorithmes de Machine Learning. Dans cette stratégie, un algorithme de k-means est utilisé pour regrouper les messages en fonction de leurs caractéristiques (par exemple la taille des messages, la validité des messages, et le type de messages, etc.). Les paramètres de communication, y compris le portée et le taux de transmission, la taille de la fenêtre de contention, et le paramètre AIFS (Arbitration Inter-Frame Spacing) sont déterminés pour chaque grappe de messages en vue de minimiser le délai de livraison. Ensuite, les paramètres de communication déterminés sont envoyés aux véhicules par les RSUs, et les véhicules opèrent en fonction de ces paramètres pour le transfert des messages. Les performances des trois stratégies proposées ont été évaluées en simulant des scénarios dans les autoroutes et la circulation urbaine avec les simulateurs NS2 et SUMO. Des comparaisons ont aussi été faites entre les résultats obtenus à partir des stratégies proposées et les stratégies de contrôle de congestion communément utilisées. Les résultats révèlent qu’avec les stratégies de contrôle de congestion proposées, le débit du réseau augmente et le taux de perte de paquets ainsi que de délai diminuent de manière significative en comparaison aux autres stratégies. Par conséquent, l'application des méthodes proposées aide à améliorer la performance, la sureté et la fiabilité des VANets.----------ABSTRACT Vehicular Ad hoc Networks (VANets) are designed to provide reliable wireless communications between high-speed mobile nodes. In order to improve the performance of VANets’ applications, and make a safe and comfort environment for VANets’ users, Quality of Service (QoS) should be supported in these networks. The delay and packet losses are two main indicators of QoS that dramatically increase due to the congestion occurrence in the networks. Indeed, due to congestion occurrence, the channels are saturated and the packet collisions increase in the channels. Therefore, the congestion should be controlled to decrease the packet losses and delay, and to increase the performance of VANets. Congestion control in VANets is a challenging task due to the specific characteristics of VANets such as high mobility of the nodes with high speed, and high rate of topology changes, and so on. Congestion control in VANets can be carried out using the strategies that can be classified into rate-based, power-based, CSMA/CA-based, prioritizing and scheduling-based, and hybrid strategies. The congestion control strategies in VANets face to some challenges such as unfair resources usage, communication overhead, high transmission delay, and inefficient bandwidth utilization, and so on. Therefore, it is required to develop new strategies to cope with these challenges and improve the performance of VANets. In this dissertation, first, a closed-loop congestion control strategy is developed. This strategy is a dynamic and distributed congestion control strategy that detects the congestion by measuring the channel usage level. Then, the congestion is controlled by tuning the transmission range and rate that considerably impact on the channel saturation. Tuning the transmission range and rate in VANets is an NP-hard problem due to the high complexity of determining the proper values for these parameters in vehicular networks. Considering the benefits of Tabu search algorithm and its adaptability with the problem, a multi-objective Tabu search algorithm is used for tuning transmission range and rate in reasonable time. In the proposed algorithm, the delay and jitter are minimized as the objective functions of multi-objective Tabu Search algorithm. Second, two open-loop congestion control strategies are proposed that prevent the congestion occurrence in the channels using the prioritizing and scheduling the messages. These strategies define the priority for each message by considering the content of messages (i.e. types of the messages for example emergency, beacon, and service messages), size of messages, and state of the networks (e.g. velocity, direction, usefulness, distance and validity metrics). The scheduling of the messages is conducted based on the defined priorities. In addition, as the second scheduling technique, a Tabu Search algorithm is employed to schedule the control and service channel queues in a reasonable time. For this purpose, the delay and jitter of messages delivery are minimized. Finally, a localized and centralized strategy is proposed that uses RSUs set at intersections for detecting and controlling the congestion. These strategy clusters all the messages that transferred between the vehicles stopped before the red traffic light using Machine Learning algorithms. In this strategy, a K-means learning algorithm is used for clustering the messages based on their features (e.g. size of messages, validity of messages, and type of messages, and so on). The communication parameters including the transmission range and rate, contention window size, and Arbitration Inter-Frame Spacing (AIFS) are determined for each messages cluter based on the minimized delivery delay. Then, the determined communication parameters are sent to the vehicles by RSUs, and the vehicles operate based on these parameters for transferring the messages. The performances of three proposed strategies were evaluated by simulating the highway and urban scenarios in NS2 and SUMO simulators. Comparisons were also made between the results obtained from the proposed strategies and the common used congestion control strategies. The results reveal that using the proposed congestion control strategies, the throughput, packet loss ratio and delay are significantly improved as compared to the other strategies. Therefore, applications of the proposed strategies help improve the performance, safety, and reliability of VANets

    Quality of Service in Vehicular Ad Hoc Networks: Methodical Evaluation and Enhancements for ITS-G5

    Get PDF
    After many formative years, the ad hoc wireless communication between vehicles has become a vehicular technology available in mass production cars in 2020. Vehicles form spontaneous Vehicular Ad Hoc Networks (VANETs), which enable communication whenever vehicles are nearby without need for supportive infrastructure. In Europe, this communication is standardised comprehensively as Intelligent Transport Systems in the 5.9 GHz band (ITS-G5). This thesis centres around Quality of Service (QoS) in these VANETs based on ITS-G5 technology. Whilst only a few vehicles communicate, radio resources are plenty, and channel congestion is a minor issue. With progressing deployment, congestion control becomes crucial to preserve QoS by preventing high latencies or foiled information dissemination. The developed VANET simulation model, featuring an elaborated ITS-G5 protocol stack, allows investigation of QoS methodically. It also considers the characteristics of ITS-G5 radios such as the signal attenuation in vehicular environments and the capture effect by receivers. Backed by this simulation model, several enhancements for ITS-G5 are proposed to control congestion reliably and thus ensure QoS for its applications. Modifications at the GeoNetworking (GN) protocol prevent massive packet occurrences in a short time and hence congestion. Glow Forwarding is introduced as GN extension to distribute delay-tolerant information. The revised Decentralized Congestion Control (DCC) cross-layer supports low-latency transmission of event-triggered, periodic and relayed packets. DCC triggers periodic services and manages a shared duty cycle budget dedicated to packet forwarding for this purpose. Evaluation in large-scale networks reveals that this enhanced ITS-G5 system can reliably reduce the information age of periodically sent messages. The forwarding budget virtually eliminates the starvation of multi-hop packets and still avoids congestion caused by excessive forwarding. The presented enhancements thus pave the way to scale up VANETs for wide-spread deployment and future applications

    An efficient cluster-based service model for vehicular ad-hoc networks on motorways

    Get PDF
    Vehicular Ad-Hoc Networks (VANET) can, but not limited to provide users with useful traffic and environmental information services to improve travelling efficiency and road safety. The communications systems used in VANET include vehicle-to-vehicle communications (V2V) and vehicle-to-infrastructure communications (V2I). The transmission delay and the energy consumption cost for maintaining good-quality communications vary depending on the transmission distance and transmission power, especially on motorways where vehicles are moving at higher speeds. In addition, in modern transportation systems, electric vehicles are becoming more and more popular, which require a more efficient battery management, this also call for an efficient way of vehicular transmission. In this project, a cluster-based two-way data service model to provide real-time data services for vehicles on motorways is designed. The design promotes efficient cooperation between V2V and V2I, or namely V2X, with the objective of improving both service and energy performance for vehicular networks with traffic in the same direction. Clustering is an effective way of applying V2X in VANET systems, where the cluster head will take the main responsibility of exchanging data with Road Side Units (RSU) and other cluster members. The model includes local service data collection, data aggregation, and service data downloading. We use SUMO and OMNET++ to simulate the traffic scenarios and the network communications. Two different models (V2X and V2I) are compared to evaluate the performance of the proposed model under different flow speeds. From the results, we conclude that the cluster-based service model outperforms the non-clustered model in terms of service successful ratio, network throughput and energy consumption

    Reliability and Efficiency of Vehicular Network Applications

    Get PDF
    The DSRC/WAVE initiative is forecast to enable a plethora of applications, classified in two broad types of safety and non-safety applications. In the former type, the reliability performance is of tremendous prominence while, in the latter case, the efficiency of information dissemination is the key driving factor. For safety applications, we adopt a systematic approach to analytically investigate the reliability of the communication system in a symbiotic relationship with the host system comprising a vehicular traffic system and radio propagation environment. To this aim, the¬ interference factor is identified as the central element of the symbiotic relationship. Our approach to the investigation of interference and its impacts on the communication reliability departs from previous studies by the degree of realism incorporated in the host system model. In one dimension, realistic traffic models are developed to describe the vehicular traffic behaviour. In a second dimension, a realistic radio propagation model is employed to capture the unique signal propagation aspects of the host system. We address the case of non-safety applications by proposing a generic framework as a capstone architecture for the development of new applications and the efficiency evaluation of existing ones. This framework, while being independent from networking technology, enables accurate characterization of the various information dissemination tasks that a node performs in cooperation with others. As the central element of the framework, we propose a game theoretic model to describe the interaction of meeting nodes aiming to exchange information of mutual or social interests. An adaptive mechanism is designed to enable a mobile node to measure the social significance of various information topics, which is then used by the node to prioritize the forwarding of information objects

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field
    • …
    corecore