138 research outputs found

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    The Coexistence of D2D Communication under Heterogeneous Cellular Networks (HetNets)

    Get PDF
    Device-to-Device (D2D) communication is a promising technique for supporting the stringent requirements of the fifth-generation cellular network (5G). This new technique has garnered significant attention in cellular network standards for proximity communication as a means to improve cellular spectrum utilization, to decrease user equipment energy consumption, and to reduce end-to-end delay. This dissertation reports an investigation of D2D communication coexistence under 5G heterogeneous cellular network (HetNets) in terms of spectrum allocation and energy efficiency. The work reported herein describes a low-complexity D2D resource allocation algorithm for downlink (DL) resource reuse that can be leveraged to improve network throughput. Notably, cross-tier interference was considered when establishing D2D communication (e.g., macro base station to D2D links; small base station to D2D links; and D2D communication to cellular links served by the macro and small base stations). An allocation algorithm was introduced to reduce interference from D2D to cellular when a single D2D link is sharing cellular resources. Performance of the proposed algorithm was evaluated and compared to various resource allocations. Simulation results demonstrated that the proposed algorithm improves overall system throughput. This allocation algorithm achieved a near-optimal solution when compared with a brute force approach. This dissertation also presents a novel framework for optimizing the energy efficiency of D2D communication coexistence with HetNets in DL transmission. This optimization problem was mathematically formulated in terms of mode selection, power control, and resources allocation (i.e., NP-hard problem). The optimization fraction problem was simplified based on network load and was solved using various optimization methods. An innovative dynamic mode selection based on Fuzzy clustering was also introduced. Proposed scheme performance was evaluated and compared to the standard algorithm. Simulation validated the advantage of the proposed framework in terms of performance gain in both energy efficiency and the number of successfully connected D2D users. Moreover, the energy efficiency of HetNets with D2D compatibility was improved. Finally, this dissertation details a stochastic analytical model for an LTE scheduler with D2D communication. By assuming exponential distributions for users scheduling time, a throughput estimation model was developed using two-dimensional Continuous Time Markov chains (2D-CTMC) of birth-death type. The proposed model will predict the expected number of D2D operated in dedicated and reuse mode, as well as the systems long-term throughput

    Improving Frequency Reuse and Cochannel Interference Coordination in 4G HetNets

    Get PDF
    This report describes my M.A.Sc. thesis research work. The emerging 4th generation (4G) mobile systems and networks (so called 4G HetNets) are designed as multilayered cellular topology with a number of asymmetrically located, asymmetrically powered, self-organizing, and user-operated indoor small cell (e.g., pico/femto cells and WLANs) with a variety of cell architectures that are overlaid by a large cell (macro cell) with some or all interfering wireless links. These designs of 4G HetNets bring new challenges such as increased dynamics of user mobility and data traffic trespassing over the multi-layered cell boundaries. Traditional approaches of radio resource allocation and inter-cell (cochannel) interference management that are mostly centralized and static in the network core and are carried out pre-hand by the operator in 3G and lower cellular technologies, are liable to increased signaling overhead, latencies, complexities, and scalability issues and, thus, are not viable in case of 4G HetNets. In this thesis a comprehensive research study is carried out on improving the radio resource sharing and inter-cell interference management in 4G HetNets. The solution strategy exploits dynamic and adaptive channel allocation approaches such as dynamic and opportunistic spectrum access (DSA, OSA) techniques, through exploiting the spatiotemporal diversities among transmissions in orthogonal frequency division multiple access (OFDMA) based medium access in 4G HetNets. In this regards, a novel framework named as Hybrid Radio Resource Sharing (HRRS) is introduced. HRRS comprises of these two functional modules: Cognitive Radio Resource Sharing (CRRS) and Proactive Link Adaptation (PLA) scheme. A dynamic switching algorithm enables CRRS and PLA modules to adaptively invoke according to whether orthogonal channelization is to be carried out exploiting the interweave channel allocation (ICA) approach or non-orthogonal channelization is to be carried out exploiting the underlay channel allocation (UCA) approach respectively when relevant conditions regarding the traffic demand and radio resource availability are met. Benefits of CRRS scheme are identified through simulative analysis in comparison to the legacy cochannel and dedicated channel deployments of femto cells respectively. The case study and numerical analysis for PLA scheme is carried out to understand the dynamics of threshold interference ranges as function of transmit powers of MBS and FBS, relative ranges of radio entities, and QoS requirement of services with the value realization of PLA scheme.1 yea
    • …
    corecore