385 research outputs found

    Tractable Approach to MmWaves Cellular Analysis with FSO Backhauling under Feedback Delay and Hardware Limitations

    Full text link
    In this work, we investigate the performance of a millimeter waves (mmWaves) cellular system with free space optical (FSO) backhauling. MmWave channels are subject to Nakagami-m fading while the optical links experience the Double Generalized Gamma including atmospheric turbulence, path loss and the misalignment between the transmitter and the receiver aperture (also known as the pointing errors). The FSO model also takes into account the receiver detection technique which could be either heterodyne or intensity modulation and direct detection (IM/DD). Each user equipment (UE) has to be associated to one serving base station (BS) based on the received signal strength (RSS) or Channel State Information (CSI). We assume partial relay selection (PRS) with CSI based on mmWaves channels to select the BS associated with the highest received CSI. Each serving BS decodes the received signal for denoising, converts it into modulated FSO signal, and then forwards it to the data center. Thereby, each BS can be viewed as a decode-and-forward (DF) relay. In practice, the relay hardware suffers from nonlinear high power amplification (HPA) impairments which, substantially degrade the system performance. In this work, we will discuss the impacts of three common HPA impairments named respectively, soft envelope limiter (SEL), traveling wave tube amplifier (TWTA), and solid state power amplifier (SSPA). Novel closed-forms and tight upper bounds of the outage probability, the probability of error, and the achievable rate are derived. Capitalizing on these performance, we derive the high SNR asymptotes to get engineering insights into the system gain such as the diversity order.Comment: arXiv admin note: substantial text overlap with arXiv:1901.0424

    Outage Analysis of Cooperative NOMA in Millimeter Wave Vehicular Network at Intersections

    Full text link
    In this paper, we study the impact and the improvement of using cooperative non-orthogonal multiple access scheme (NOMA) on a millimeter wave (mmWave) vehicular network at intersection roads. The intersections consists of two perpendicular roads. The transmission occurs between a source, and two destinations nodes with a help of a relay. We assume that the interference comes from as set of vehicles that are distributed as a one dimensional homogeneous Poisson point process (PPP). We derive closed form outage probability expressions for cooperative NOMA, and compare them with cooperative orthogonal multiple access (OMA). We show that, NOMA offers a significant improvement, especially for high data rates. However, there a condition imposed to the data rate, otherwise, the performance of NOMA will decreases dramatically. We show that as the nodes approach the intersection, the outage probability increases. Counter-intuitively, We show that, the non line of sigh (NLOS) scenario has a better performance than the line of sigh (LOS) scenario. The analysis is conducted using tools from stochastic geometry and is verified with Monte Carlo simulations

    Outage Probability Analysis of Uplink NOMA over Ultra-High-Speed FSO-Backhauled Systems

    Full text link
    In this paper, we consider a relay-assisted uplink non-orthogonal multiple access (NOMA) system where two radio frequency (RF) users are grouped for simultaneous transmission, over each resource block, to an intermediate relay which forwards the amplified version of the users' aggregated signals in the presence of multiuser interference to a relatively far destination. In order to cope with the users' ever-increasing desire for higher data rates, a high-throughput free-space optics (FSO) link is employed as the relay-destination backhaul link. Dynamic-order decoding is employed at the destination to determine the priority of the users based on their instantaneous channel state information (CSI). Closed-form expressions for the individual- and sum-rate outage probability formulas are derived in the case of independent Rayleigh fading for the users-relay access links when the FSO backhaul link is subject to Gamma-Gamma turbulence with pointing error. This work can be regarded as an initial attempt to incorporate power-domain NOMA over ultra-high-speed FSO-backhauled systems, known as mixed RF-FSO systems

    Full-Duplex Relaying with Half-Duplex Relays

    Full text link
    We consider "virtual" full-duplex relaying by means of half-duplex relays. In this configuration, each relay stage in a multi-hop relaying network is formed by at least two relays, used alternatively in transmit and receive modes, such that while one relay transmits its signal to the next stage, the other relay receives a signal from the previous stage. With such a pipelined scheme, the source is active and sends a new information message in each time slot. We consider the achievable rates for different coding schemes and compare them with a cut-set upper bound, which is tight in certain conditions. In particular, we show that both lattice-based Compute and Forward (CoF) and Quantize reMap and Forward (QMF) yield attractive performance and can be easily implemented. In particular, QMF in this context does not require "long" messages and joint (non-unique) decoding, if the quantization mean-square distortion at the relays is chosen appropriately. Also, in the multi-hop case the gap of QMF from the cut-set upper bound grows logarithmically with the number of stages, and not linearly as in the case of "noise level" quantization. Furthermore, we show that CoF is particularly attractive in the case of multi-hop relaying, when the channel gains have fluctuations not larger than 3dB, yielding a rate that does not depend on the number of relaying stages. In particular, we argue that such architecture may be useful for a wireless backhaul with line-of-sight propagation between the relays.Comment: Submitted to IEEE Transactions on Information Theor

    Enabling Millimeter Wave Communications for Use Cases of 5G and Beyond Networks

    Get PDF
    The wide bandwidth requirements of the fifth generation (5G) and beyond networks are driving the move to millimeter wave (mmWave) bands where it can provide a huge increase in the available bandwidth. Increasing the bandwidth is an effective way to improve the channel capacity with limited power. Moreover, the short wavelengths of such bands enable massive number of antennas to be integrated together in small areas. With such massive number of antennas, narrow beamwidth beams can be obtained which in turn can improve the security. Furthermore, the massive number of antennas can help in mitigating the severe path-loss at mmWave frequencies, and realize high data rate communication at reasonable distances. Nevertheless, one of the main bottlenecks of mmWave communications is the signal blockage. This is due to weak diffraction ability and severe penetration losses by many common building materials such as brick, and mortar as well as the losses due to human bodies. Thus, user mobility and/or small movements of obstacles and reflectors cause rapid channel gain variations which leads to unreliable communication links. The harsh propagation environment at such high frequencies makes it hard to provide a reliable service, hence, maintaining connectivity is one key design challenge in mmWave networks. Relays represent a promising approach to improve mmWave connectivity where they can redirect the signal to avoid the obstacles existing in the propagation environment. However, routing in mmWave networks is known to be a very challenging problem due to the inherent propagation characteristics of mmWave frequencies. Furthermore, inflexible routing technique may worsen network performance and increase scheduling overhead. As such, designing an appropriate transmission routing technique for each service is a crucial issue in mmWave networks. Indeed, multiple factors must be taken into account in the routing process, such as guaranteeing the robustness of network connectivity and providing high data rates. In this thesis, we propose an analytical framework to investigate the network reliability of mmWave relaying systems for multi-hop transmissions. We also propose a flexible routing technique for mmWave networks, namely the nthn^{\rm th} best routing technique. The performance of the proposed routing technique is investigated using tools from stochastic geometry. The obtained results provide useful insights on adjusting the signal noise ratio (SNR) threshold for decode and forward (DF) relay according to the order of the best relay, blockage and relay densities in order to improve spectral efficiency. We also propose a novel mathematical framework to investigate the performance of two appropriate routing techniques for mmWave networks, namely minimum hop count (MHC) and nearest LoS relay to the destination with MHC (NLR-MHC) to support wide range of use cases for 5G and beyond networks. Analytical models are provided to evaluate the performance of the proposed techniques using tools from stochastic geometry. In doing so, we model the distribution of hop count using phase-type distribution, and then we use this distribution to derive analytical results for the coverage probability and spectral efficiency. Capitalizing on the derived results, we introduce a comprehensive study of the effects of different system parameters on the performance of multi-hop mmWave systems. These findings provide important insights for designing multi-hop mmWave networks with better performance. Furthermore, we adapt the proposed relay selection technique for IoT devices in mmWave relaying systems to prolong the IoT device’s battery life. The obtained results reveal the trade-off between the network connectivity and the energy consumption of IoT devices. Lastly, we have exploited the enormous bandwidth available in the mmWave band to support reliable fronthaul links for cell-free (CF) massive multiple-input multiple-output (MIMO). We provide a comprehensive investigation of different system parameters on the uplink (UL) performance of mmWave fronthaul-based CF mMIMO systems. Results reveal that increasing the access point (AP) density beyond a certain limit would not achieve further improvement in the UL data rates. Also, the higher number of antennas per AP may even cause UL data rates degradation

    Throughput Analysis for Relay-Assisted Millimeter-Wave Wireless Networks

    Full text link
    In this work, we analyze the throughput of random access multi-user relay-assisted millimeter-wave wireless networks, in which both the destination and the relay have multipacket reception capability. We consider a full-duplex network cooperative relay that stores the successfully received packets in a queue, for which we analyze the performance. Moreover, we study the effects on the network throughput of two different strategies, by which the source nodes transmit either a packet to both the destination and the relay in the same timeslot by using wider beams (broadcast approach) or to only one of these two by using narrower beams (fully directional approach). We consider the inter-beam interference at the receiver and show the optimal strategy with respect to several system parameters, e.g., positions and number of the nodes

    Association and Caching in Relay-Assisted mmWave Networks: From A Stochastic Geometry Perspective

    Full text link
    Limited backhaul bandwidth and blockage effects are two main factors limiting the practical deployment of millimeter wave (mmWave) networks. To tackle these issues, we study the feasibility of relaying as well as caching in mmWave networks. A user association and relaying (UAR) criterion dependent on both caching status and maximum biased received power is proposed by considering the spatial correlation caused by the coexistence of base stations (BSs) and relay nodes (RNs). A joint UAR and caching placement problem is then formulated to maximize the backhaul offloading traffic. Using stochastic geometry tools, we decouple the joint UAR and caching placement problem by analyzing the relationship between UAR probabilities and caching placement probabilities. We then optimize the transformed caching placement problem based on polyblock outer approximation by exploiting the monotonic property in the general case and utilizing convex optimization in the noise-limited case. Accordingly, we propose a BS and RN selection algorithm where caching status at BSs and maximum biased received power are jointly considered. Experimental results demonstrate a significant enhancement of backhaul offloading using the proposed algorithms, and show that deploying more RNs and increasing cache size in mmWave networks is a more cost-effective alternative than increasing BS density to achieve similar backhaul offloading performance.Comment: 34 pages, 6 figure

    A Survey of Rate-optimal Power Domain NOMA with Enabling Technologies of Future Wireless Networks

    Full text link
    The ambitious high data-rate applications in the envisioned future B5G networks require new solutions, including the advent of more advanced architectures than the ones already used in 5G networks, and the coalition of different communications schemes and technologies to enable these applications requirements. Among the candidate schemes for future wireless networks are NOMA schemes that allow serving more than one user in the same resource block by multiplexing users in other domains than frequency or time. In this way, NOMA schemes tend to offer several advantages over OMA schemes such as improved user fairness and spectral efficiency, higher cell-edge throughput, massive connectivity support, and low transmission latency. With these merits, NOMA-enabled transmission schemes are being increasingly looked at as promising multiple access schemes for future wireless networks. When the power domain is used to multiplex the users, it is referred to as PD-NOMA. In this paper, we survey the integration of PD-NOMA with the enabling communications schemes and technologies that are expected to meet the various requirements of B5G networks. In particular, this paper surveys the different rate optimization scenarios studied in the literature when PD-NOMA is combined with one or more of the candidate schemes and technologies for B5G networks including MISO, MIMO, mMIMO, advanced antenna architectures, mmWave and THz, CoMP, cooperative communications, cognitive radio, VLC, UAV and others. The considered system models, the optimization methods utilized to maximize the achievable rates, and the main lessons learnt on the optimization and the performance of these NOMA-enabled schemes and technologies are discussed in detail along with the future research directions for these combined schemes. Moreover, the role of machine learning in optimizing these NOMA-enabled technologies is addressed.Comment: Accepted for publication in IEEE Surveys and Tutorials, July 202

    On the Performance of Millimeter Wave-based RF-FSO Multi-hop and Mesh Networks

    Full text link
    This paper studies the performance of multi-hop and mesh networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the networks' outage probability and ergodic achievable rates. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we determine the minimum number of the transmit antennas in the RF link such that the same rate is supported in the RF- and the FSO-based hops. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, HARQ can effectively improve the outage probability/energy efficiency, and compensate for the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual-hop networks, outage probability of 10^{-4} and code rate of 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to cases with open-loop communication, by 13 and 17 dB, respectively.Comment: Submitted to IEEE Transactions on Wireless Communication

    On the Performance of Cooperative NOMA Using MRC at Road Intersections in the Presence of Interference

    Full text link
    As the traffic safety has become of utmost importance, much attention is given to intelligent transportation systems (ITSs), and more particularly to vehicular communications (VCs). Moreover, 50 % of all crashes happen at road intersections, which makes theme a critical areas. In this paper, we investigate the improvement when implementing maximum ratio combining (MRC) in cooperative VCs transmission schemes using non-orthogonal multiple access scheme (NOMA) at road intersections. We consider that a source transmits a message to two destinations with a aid of a relay. The transmission undergoes interference generated from a set of vehicles on the roads. We obtained closed form outage probability expressions, and we extend the derivation for a scenario involving K destination nodes and several road lanes. The performance of MRC cooperative NOMA is compared with the standard cooperative NOMA, and we show that implementing MRC with NOMA offers a significant improvement over the standard cooperative NOMA. Also, we compare the performance of MRC using NOMA with MRC cooperative orthogonal multiple access (OMA), and demonstrate that NOMA significantly outperforms OMA. We conclude that it is always beneficial to use MRC and NOMA even at the cost of implementation complexity. Finally, we demonstrate that the outage probability increases drasticallyen the vehicles are closer to the road intersection, and that using MRC with NOMA improves significantly the performance in this context. To verify the correctness of our analysis, extensive Monte-Carlo simulations are carried out.Comment: arXiv admin note: text overlap with arXiv:1909.0198
    corecore