12 research outputs found

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities

    Identification of unknown petri net structures from growing observation sequences

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This thesis proposed an algorithm that can find optimized Petri nets from given observation sequences according to some rules of optimization. The basic idea of this algorithm is that although the length of the observation sequences can keep growing, we can think of the growing as periodic and algorithm deals with fixed observations at different time. And the algorithm developed has polynomial complexity. A segment of example code programed according to this algorithm has also been shown. Furthermore, we modify this algorithm and it can check whether a Petri net could fit the observation sequences after several steps. The modified algorithm could work in constant time. These algorithms could be used in optimization of the control systems and communication networks to simplify their structures

    Safety‐oriented discrete event model for airport A‐SMGCS reliability assessment

    Get PDF
    A detailed analysis of State of the Art Technologies and Procedures into Airport Advanced-Surface Movement Guidance and Control Systems has been provided in this thesis, together with the review ofStatistical Monte Carlo Analysis, Reliability Assessment and Petri Nets theories. This practical and theoretical background has lead the author to the conclusion that there is a lack of linkage in between these fields. At the same of time the rapid increasing of Air Traffic all over the world, has brought in evidence the urgent need of practical instruments able to identify and quantify the risks connected with Aircraft operations on the ground, since the Airport has shown to be the actual ‘bottle neck’ of the entire Air Transport System. Therefore, the only winning approach to such a critical matter has to be multi-disciplinary, sewing together apparently different subjects, coming from the most disparate areas of interest and trying to fulfil the gap. The result of this thesis work has come to a start towards the end, when a Timed Coloured Petri Net (TCPN) model of a ‘sample’ Airport A-SMGCS has been developed, that is capable of taking into account different orders of questions arisen during these recent years and tries to give them some good answers. The A-SMGCS Airport model is, in the end, a parametric tool relying on Discrete Event System theory, able to perform a Reliability Analysis of the system itself, that: • uses a Monte Carlo Analysis applied to a Timed Coloured Petri Net, whose purpose is to evaluate the Safety Level of Surface Movements along an Airport • lets the user to analyse the impact of Procedures and Reliability Indexes of Systems such as Surface Movement Radars, Automatic Dependent Surveillance-Broadcast, Airport Lighting Systems, Microwave Sensors, and so on… onto the Safety Level of Airport Aircraft Transport System • not only is a valid instrument in the Design Phase, but it is useful also into the Certifying Activities an in monitoring the Safety Level of the above mentioned System with respect to changes to Technologies and different Procedures.This TCPN model has been verified against qualitative engineering expectations by using simulation experiments and occupancy time schedules generated a priori. Simulation times are good, and since the model has been written into Simulink/Stateflow programming language, it can be compiled to run real-time in C language (Real-time workshop and Stateflow Coder), thus relying on portable code, able to run virtually on any platform, giving even better performances in terms of execution time. One of the most interesting applications of this work is the estimate, for an Airport, of the kind of A-SMGCS level of implementation needed (Technical/Economical convenience evaluation). As a matter of fact, starting from the Traffic Volume and choosing the kind of Ground Equipment to be installed, one can make predictions about the Safety Level of the System: if the value is compliant with the TLS required by ICAO, the A-SMGCS level of Implementation is sufficiently adequate. Nevertheless, even if the Level of Safety has been satisfied, some delays due to reduced or simplified performances (even if Safety is compliant) of some of the equipment (e.g. with reference to False Alarm Rates) can lead to previously unexpected economical consequences, thus requiring more accurate systems to be installed, in order to meet also Airport economical constraints. Work in progress includes the analysis of the effect of weather conditions and re-sequencing of a given schedule. The effect of re-sequencing a given schedule is not yet enough realistic since the model does not apply inter arrival and departure separations. However, the model might show some effect on different sequences based on runway occupancy times. A further developed model containing wake turbulence separation conditions would be more sensitive for this case. Hence, further work will be directed towards: • The development of On-Line Re-Scheduling based on the available actual runway/taxiway configuration and weather conditions. • The Engineering Safety Assessment of some small Italian Airport A-SMGCSs (Model validation with real data). • The application of Stochastic Differential Equations systems in order to evaluate the collision risk on the ground inside the Place alone on the Petri Net, in the event of a Short Term Conflict Alert (STCA), by adopting Reich Collision Risk Model. • Optimal Air Traffic Control Algorithms Synthesis (Adaptive look-ahead Optimization), by Dynamically Timed Coloured Petri Nets, together with the implementation of Error-Recovery Strategies and Diagnosis Functions

    Model Checking Contest @ Petri Nets, Report on the 2013 edition

    Full text link
    This document presents the results of the Model Checking Contest held at Petri Nets 2013 in Milano. This contest aimed at a fair and experimental evaluation of the performances of model checking techniques applied to Petri nets. This is the third edition after two successful editions in 2011 and 2012. The participating tools were compared on several examinations (state space generation and evaluation of several types of formul{\ae} -- reachability, LTL, CTL for various classes of atomic propositions) run on a set of common models (Place/Transition and Symmetric Petri nets). After a short overview of the contest, this paper provides the raw results from the contest, model per model and examination per examination. An HTML version of this report is also provided (http://mcc.lip6.fr).Comment: one main report (422 pages) and two annexes (1386 and 1740 pages

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Supporting effective unexpected exception handling in workflow management systems within organizaional contexts

    Get PDF
    Tese de doutoramento em Informática (Engenharia Informática), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008Workflow Management Systems (WfMS) support the execution of organizational processes within organizations. Processes are modelled using high level languages specifying the sequence of tasks the organization has to perform. However, organizational processes do not have always a smooth flow conforming to any possible designed model and exceptions to the rule happen often. Organizations require flexibility to react to situations not predicted in the model. The required flexibility should be complemented with robustness to guarantee system reliability even in extreme situations. In our work, we have introduced the concept of WfMS resilience that comprises these two facets: robustness and flexibility. The main objective of our work is to increase resilience in WfMSs. From the events demanding for WfMS resilience, we focused on ad hoc effective unexpected exceptions as those for which no previous knowledge exist is the organization to derive the handling procedure and no plan can be a priori established. These exceptions usually require human intervention and problem solving activities, since the concrete situation may not be entirely understood before humans start reacting to the event. After discussing existing approaches to increase WfMS resilience, we have identified five levels of conformity. The fifth level, being the most demanding one, requires unrestricted humanistic interventions to workflow execution. In this thesis, we propose a system to support unrestricted users' interventions to the WfMS and we characterize the interventions as unstructured activities. The system has two modes of operation: it usually works under model control and changes to unstructured activities support when an exception is detected. The exception handling activities are carried out until the system is placed back into a coherent mode, where work may proceed undermodel execution control

    Planification de pas pour robots humanoïdes : approches discrètes et continues

    Get PDF
    Dans cette thèse nous nous intéressons à deux types d'approches pour la planification de pas pour robots humanoïdes : d'une part les approches discrètes où le robot n'a qu'un nombre fini de pas possibles, et d'autre part les approches où le robot se base sur des zones de faisabilité continues. Nous étudions ces problèmes à la fois du point de vue théorique et pratique. En particulier nous décrivons deux méthodes originales, cohérentes et efficaces pour la planification de pas, l'une dans le cas discret (chapitre 5) et l'autre dans le cas continu (chapitre 6). Nous validons ces méthodes en simulation ainsi qu'avec plusieurs expériences sur le robot HRP-2. ABSTRACT : In this thesis we investigate two types of approaches for footstep planning for humanoid robots: on one hand the discrete approaches where the robot has only a finite set of possible steps, and on the other hand the approaches where the robot uses continuous feasibility regions. We study these problems both on a theoretical and practical level. In particular, we describe two original, coherent and efficient methods for footstep planning, one in the discrete case (chapter 5), and one in the continuous case (chapter 6). We validate these methods in simulation and with several experiments on the robot HRP-2
    corecore