14 research outputs found

    Covariate shift detection-based nonstationary adaptation in motor-imagery-based brain–computer interface

    Get PDF
    Nonstationary learning refers to the process that can learn patterns from data, adapt to shifts, and improve performance of the system with its experience while operating in the nonstationary environments (NSEs). Covariate shift (CS) presents a major challenge during data processing within NSEs wherein the input-data distribution shifts during transitioning from training to testing phase. CS is one of the fundamental issues in electroencephalogram (EEG)-based brain-computer interface (BCI) systems and can be often observed during multiple trials of EEG data recorded over different sessions. Thus, conventional learning algorithms struggle to accommodate these CSs in streaming EEG data resulting in low performance (in terms of classification accuracy) of motor imagery (MI)-related BCI systems. This chapter aims to introduce a novel framework for nonstationary adaptation in MI-related BCI system based on CS detection applied to the temporal and spatial filtered features extracted from raw EEG signals. The chapter collectively provides an efficient method for accounting nonstationarity in EEG data during learning in NSEs

    Online Covariate Shift Detection based Adaptive Brain-Computer Interface to Trigger Hand Exoskeleton Feedback for Neuro-Rehabilitation

    Get PDF
    A major issue in electroencephalogram (EEG) based brain-computer interfaces (BCIs) is the intrinsic non-stationarities in the brain waves, which may degrade the performance of the classifier, while transitioning from calibration to feedback generation phase. The non-stationary nature of the EEG data may cause its input probability distribution to vary over time, which often appear as a covariate shift. To adapt to the covariate shift, we had proposed an adaptive learning method in our previous work and tested it on offline standard datasets. This paper presents an online BCI system using previously developed covariate shift detection (CSD)-based adaptive classifier to discriminate between mental tasks and generate neurofeedback in the form of visual and exoskeleton motion. The CSD test helps prevent unnecessary retraining of the classifier. The feasibility of the developed online-BCI system was first tested on 10 healthy individuals, and then on 10 stroke patients having hand disability. A comparison of the proposed online CSD-based adaptive classifier with conventional non-adaptive classifier has shown a significantly (p<0.01) higher classification accuracy in both the cases of healthy and patient groups. The results demonstrate that the online CSD-based adaptive BCI system is superior to the non-adaptive BCI system and it is feasible to be used for actuating hand exoskeleton for the stroke-rehabilitation applications

    Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface

    Get PDF
    The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, which poses great difficulty for developments of online adaptive data-driven systems. Ensemble learning approaches have been used previously to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while increasing high computational cost. This paper presents a novel integration of covariate shift estimation and unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) related EEG classification. The proposed method first employs an exponentially weighted moving average model to detect the covariate shifts in the common spatial pattern features extracted from MI related brain responses. Then, a classifier ensemble was created and updated over time to account for changes in streaming input data distribution wherein new classifiers are added to the ensemble in accordance with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed method was extensively compared with the state-of-the-art single-classifier based passive scheme, single-classifier based active scheme and ensemble based passive schemes. The experimental results show that the proposed active scheme based ensemble learning algorithm significantly enhances the BCI performance in MI classifications

    Single-Trial EEG Classification with EEGNet and Neural Structured Learning for Improving BCI Performance

    Get PDF
    Research and development of new machine learning techniques to augment the performance of Brain-computer Interfaces (BCI) have always been an open area of interest among researchers. The need to develop robust and generalised classifiers has been one of the vital requirements in BCI for realworld application. EEGNet is a compact CNN model that had been reported to be generalised for different BCI paradigms. In this paper, we have aimed at further improving the EEGNet architecture by employing Neural Structured Learning (NSL) that taps into the relational information within the data to regularise the training of the neural network. This would allow the EEGNet to make better predictions while maintaining the structural similarity of the input. In addition to better performance, the combination of EEGNet and NSL is more robust, works well with smaller training samples and requires on separate feature engineering, thus saving the computational cost. The proposed approach had been tested on two standard motor imagery datasets: the first being a two-class motor imagery dataset from Graz University and the second is the 4-class Dataset 2a from BCI competition 2008. The accuracy has shown that our combined EEGNet an NSL approach is superior to the sole EEGNet model

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research
    corecore