7,430 research outputs found

    Layered architecture for quantum computing

    Full text link
    We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical control of quantum dots. The timescales of physical hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum dot architecture we study could solve such problems on the timescale of days.Comment: 27 pages, 20 figure

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    Get PDF
    The experimental search for ultra high energy cosmic messengers, from E1019E\sim 10^{19} eV to beyond E1020E\sim 10^{20} eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we describe the scientific goals and requirements of the SEUSO concept. We then introduce the SEUSO observational approach and describe the main instrument and mission features. We conclude discussing the expected performance of the mission

    DE-FG02-01ER83269 Final Report

    Full text link

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    EDA Solutions for Double Patterning Lithography

    Get PDF
    Expanding the optical lithography to 32-nm node and beyond is impossible using existing single exposure systems. As such, double patterning lithography (DPL) is the most promising option to generate the required lithography resolution, where the target layout is printed with two separate imaging processes. Among different DPL techniques litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) methods are the most popular ones, which apply two complete exposure lithography steps and an exposure lithography followed by a chemical imaging process, respectively. To realize double patterning lithography, patterns located within a sub-resolution distance should be assigned to either of the imaging sub-processes, so-called layout decomposition. To achieve the optimal design yield, layout decomposition problem should be solved with respect to characteristics and limitations of the applied DPL method. For example, although patterns can be split between the two sub-masks in the LELE method to generate conflict free masks, this pattern split is not favorable due to its sensitivity to lithography imperfections such as the overlay error. On the other hand, pattern split is forbidden in SADP method because it results in non-resolvable gap failures in the final image. In addition to the functional yield, layout decomposition affects parametric yield of the designs printed by double patterning. To deal with both functional and parametric challenges of DPL in dense and large layouts, EDA solutions for DPL are addressed in this thesis. To this end, we proposed a statistical method to determine the interconnect width and space for the LELE method under the effect of random overlay error. In addition to yield maximization and achieving near-optimal trade-off between different parametric requirements, the proposed method provides valuable insight about the trend of parametric and functional yields in future technology nodes. Next, we focused on self-aligned double patterning and proposed layout design and decomposition methods to provide SADP-compatible layouts and litho-friendly decomposed layouts. Precisely, a grid-based ILP formulation of SADP decomposition was proposed to avoid decomposition conflicts and improve overall printability of layout patterns. To overcome the limited applicability of this ILP-based method to fully-decomposable layouts, a partitioning-based method is also proposed which is faster than the grid-based ILP decomposition method too. Moreover, an A∗-based SADP-aware detailed routing method was proposed which performs detailed routing and layout decomposition simultaneously to avoid litho-limited layout configurations. The proposed router preserves the uniformity of pattern density between the two sub-masks of the SADP process. We finally extended our decomposition method for double patterning to triple patterning and formulated SATP decomposition by integer linear programming. In addition to conventional minimum width and spacing constraints, the proposed decomposition method minimizes the mandrel-trim co-defined edges and maximizes the layout features printed by structural spacers to achieve the minimum pattern distortion. This thesis is one of the very early researches that investigates the concept of litho-friendliness in SADP-aware layout design and decomposition. Provided by experimental results, the proposed methods advance prior state-of-the-art algorithms in various aspects. Precisely, the suggested SADP decomposition methods improve total length of sensitive trim edges, total EPE and overall printability of attempted designs. Additionally, our SADP-detailed routing method provides SADP-decomposable layouts in which trim patterns are highly robust to lithography imperfections. The experimental results for SATP decomposition show that total length of overlay-sensitive layout patterns, total EPE and overall printability of the attempted designs are also improved considerably by the proposed decomposition method. Additionally, the methods in this PhD thesis reveal several insights for the upcoming technology nodes which can be considered for improving the manufacturability of these nodes

    Search for the double beta decay of Zr-96 with NEMO-3 and calorimeter development for the SuperNEMO experiment

    Get PDF
    Using 9.4 g of Zr-96 and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kgy, the obtained 2vbb decay half-life measurement is [2.35 \pm 0.14(stat) \pm 0.16(syst)] \times 10_{19}yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2vbb half-life and is 0.049 \pm 0.002. The 0vbb decay half-life is excluded at the 90% CL to > 9.2 \times 10_^{21}yr corresponding to a limit on the effective Majorana neutrino mass of < 7.2 – 19.4 eV. Limits on other mechanisms of 0vbb have also been set. Due for commissioning in 2012, SuperNEMO is the next generation detector which improves upon the proven technology and success of NEMO-3 to achieve a half-life sensitivity of ~10_{26} yr (90% CL) for Se-82 which corresponds to a neutrino mass of 50-100 meV. An energy resolution of 7% FWHM at 1 MeV has been obtained for the calorimeter baseline design of SuperNEMO which is currently in the R&D phase. This result not only meets the requirement stipulated by the R&D proposal, but is unprecedented for this type of calorimeter design

    An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development

    Get PDF
    This final technical report describes the results of a NASA Innovative Advanced Concept (NIAC) Phase 2 study entitled "An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development." This NIAC Phase 2 study was conducted at the Asteroid Deflection Research Center (ADRC) of Iowa State University in 2012-2014. The study objective was to develop an innovative yet practically implementable solution to the most probable impact threat of an asteroid or comet with short warning time (less than 5 years). The technical materials contained in this final report are based on numerous technical papers, which have been previously published by the project team of the NIAC Phase 1 and 2 studies during the past three years. Those technical papers as well as a NIAC Phase 2 Executive Summary report can be downloaded from the ADRC website (www.adrc.iastate.edu)

    Strategic and practical guidelines for successful structured illumination microscopy

    Get PDF
    Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d
    corecore