20 research outputs found

    Coupling finite volume and nonstandard finite difference schemes for a singularly perturbed Schrödinger equation

    Get PDF
    The Schrödinger equation is a model for many physical processes in quantum physics. It is a singularly perturbed differential equation where the presence of the small reduced Planck’s constant makes the classical numerical methods very costly and inefficient. We design two new schemes. The first scheme is the nonstandard finite volume method, whereby the perturbation term is approximated by nonstandard technique, the potential is approximated by its mean value on the cell and the complex dependent boundary conditions are handled by exact schemes. In the second scheme, the deficiency of classical schemes is corrected by the inner expansion in the boundary layer region. Numerical simulations supporting the performance of the schemes are presented.South African NRF and DST/NRF SARChI Chair on Mathematical Models and Methods in Bioengineering and Biosciences (M3B2).http://www.tandfonline.com/loi/gcom202016-08-30hb201

    The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series

    Full text link
    Singular perturbation methods, such as the method of multiple scales and the method of matched asymptotic expansions, give series in a small parameter ε which are asymptotic but (usually) divergent. In this survey, we use a plethora of examples to illustrate the cause of the divergence, and explain how this knowledge can be exploited to generate a 'hyperasymptotic' approximation. This adds a second asymptotic expansion, with different scaling assumptions about the size of various terms in the problem, to achieve a minimum error much smaller than the best possible with the original asymptotic series. (This rescale-and-add process can be repeated further.) Weakly nonlocal solitary waves are used as an illustration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41670/1/10440_2004_Article_193995.pd

    Models of Delay Differential Equations

    Get PDF
    This book gathers a number of selected contributions aimed at providing a balanced picture of the main research lines in the realm of delay differential equations and their applications to mathematical modelling. The contributions have been carefully selected so that they cover interesting theoretical and practical analysis performed in the deterministic and the stochastic settings. The reader will find a complete overview of recent advances in ordinary and partial delay differential equations with applications in other multidisciplinary areas such as Finance, Epidemiology or Engineerin

    Drift-diffusion models for innovative semiconductor devices and their numerical solution

    Get PDF
    We present charge transport models for novel semiconductor devices which may include ionic species as well as their thermodynamically consistent finite volume discretization

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore