364 research outputs found

    Wireless Information and Power Transfer in Full-Duplex Systems with Massive Antenna Arrays

    Full text link
    We consider a multiuser wireless system with a full-duplex hybrid access point (HAP) that transmits to a set of users in the downlink channel, while receiving data from a set of energy-constrained sensors in the uplink channel. We assume that the HAP is equipped with a massive antenna array, while all users and sensor nodes have a single antenna. We adopt a time-switching protocol where in the first phase, sensors are powered through wireless energy transfer from HAP and HAP estimates the downlink channel of the users. In the second phase, sensors use the harvested energy to transmit to the HAP. The downlink-uplink sum-rate region is obtained by solving downlink sum-rate maximization problem under a constraint on uplink sum-rate. Moreover, assuming perfect and imperfect channel state information, we derive expressions for the achievable uplink and downlink rates in the large-antenna limit and approximate results that hold for any finite number of antennas. Based on these analytical results, we obtain the power-scaling law and analyze the effect of the number of antennas on the cancellation of intra-user interference and the self-interference.Comment: Accepted for the IEEE International Conference on Communications (ICC 2017

    A Dual-Function Massive MIMO Uplink OFDM Communication and Radar Architecture

    Get PDF
    This paper proposes a joint uplink massive multiple-input-multiple-output (MIMO) communication and orthogonal frequency-division multiplexing (OFDM) radar sensing architecture. Specifically, uplink communication and short-range radar sensing are considered, where the user equipments (UEs) transmit data to the base-station (BS), which simultaneously receives radar returns from the targets over the same subcarriers. Hence, the signals received at each BS antenna include radar returns and communication signals to be processed for extracting the sensing and communication data. The separation and detection of such signals are achieved by utilizing the channel diversity between the UEs and the targets. To this end, the UEs' signals are first detected and demodulated, and then subtracted from the received signal to acquire the radar returns. Symbol-based radar processing is then employed, as it provides substantial processing gains, and its detection performance is independent of the transmitted radar waveform. Furthermore, self-interference - due to the simultaneous operation of transmit and receive antennas - is taken into account. The communication rate and normalized error of the radar-target channel estimation are mathematically analyzed, and the trade-off between the achievable rate and radar detection performance is demonstrated in terms of the output power of the communication and radar sub-systems and the signal-to-noise ratio

    Review on Interference Cancellation in MIMO Receiver

    Get PDF
    The signal processing in orthogonal frequency division multiplexing and the effect of channel interference are presented in this paper. We've also talked about different multiplexing techniques like frequency division multiplexing and time division multiplexing. Also, several researchers' work in the field of interference cancellation
    • …
    corecore