3,168 research outputs found

    Coupling between Catalytic Loop Motions and Enzyme Global Dynamics

    Get PDF
    Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10-21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site. © 2012 Kurkcuoglu et al

    Characterization of the Transition State of Functional Enzyme Dynamics

    Get PDF
    Through characterization of the solvent isotope effect on protein dynamics, we have examined determinants of the rate limitation to enzyme catalysis. A global conformational change in Ribonuclease A limits the overall rate of catalytic turnover. Here we show that this motion is sensitive to solvent deuterium content; the isotope effect is 2.2, a value equivalent to the isotope effect on the catalytic rate constant. We further demonstrate that the protein motion possesses a linear proton inventory plot, indicating that a single proton is transferred in the transition state. These results provide compelling evidence for close coupling between enzyme dynamics and function and demonstrate that characterization of the transition state for protein motion in atomic detail is experimentally accessible

    Characterization of the Transition State of Functional Enzyme Dynamics

    Get PDF
    Through characterization of the solvent isotope effect on protein dynamics, we have examined determinants of the rate limitation to enzyme catalysis. A global conformational change in Ribonuclease A limits the overall rate of catalytic turnover. Here we show that this motion is sensitive to solvent deuterium content; the isotope effect is 2.2, a value equivalent to the isotope effect on the catalytic rate constant. We further demonstrate that the protein motion possesses a linear proton inventory plot, indicating that a single proton is transferred in the transition state. These results provide compelling evidence for close coupling between enzyme dynamics and function and demonstrate that characterization of the transition state for protein motion in atomic detail is experimentally accessible

    Mining electron density for functionally relevant protein polysterism in crystal structures.

    Get PDF
    This review focuses on conceptual and methodological advances in our understanding and characterization of the conformational heterogeneity of proteins. Focusing on X-ray crystallography, we describe how polysterism, the interconversion of pre-existing conformational substates, has traditionally been analyzed by comparing independent crystal structures or multiple chains within a single crystal asymmetric unit. In contrast, recent studies have focused on mining electron density maps to reveal previously 'hidden' minor conformational substates. Functional tests of the importance of minor states suggest that evolutionary selection shapes the entire conformational landscape, including uniquely configured conformational substates, the relative distribution of these substates, and the speed at which the protein can interconvert between them. An increased focus on polysterism may shape the way protein structure and function is studied in the coming years

    Structural and functional characterization of a cold-adapted stand-alone TPM domain reveals a relationship between dynamics and phosphatase activity

    Get PDF
    The TPM domain constitutes a family of recently characterized protein domains that are present in most living organisms. Although some progress has been made in understanding the cellular role of TPM-containing proteins, the relationship between structure and function is not clear yet. We have recently solved the solution and crystal structure of one TPM domain (BA42) from the Antarctic bacterium Bizionia argentinensis. In this work, we demonstrate that BA42 has phosphoric-monoester hydrolase activity. The activity of BA42 is strictly dependent on the binding of divalent metals and retains nearly 70% of the maximum at 4 °C, a typical characteristic of cold-adapted enzymes. From HSQC, 15 N relaxation measurements, and molecular dynamics studies, we determine that the flexibility of the crossing loops was associated to the protein activity. Thermal unfolding experiments showed that the local increment in flexibility of Mg2+ -bound BA42, when compared with Ca2+ -bound BA42, is associated to a decrease in global protein stability. Finally, through mutagenesis experiments, we unambiguously demonstrate that the region comprising the metal-binding site participates in the catalytic mechanism. The results shown here contribute to the understanding of the relationship between structure and function of this new family of TPM domains providing important cues on the regulatory role of Mg2+ and Ca2+ and the molecular mechanism underlying enzyme activity at low temperatures.Fil: Pellizza, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Smal, Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ithuralde, Raúl Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cicero, Daniel Oscar. Universita Tor Vergata; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Aran, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis

    Get PDF
    Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme–substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme–substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design

    Structure and Dynamics of the G121V Dihydrofolate Reductase Mutant: Lessons from a Transition-State Inhibitor Complex

    Get PDF
    It is well known that enzyme flexibility is critical for function. This is due to the observation that the rates of intramolecular enzyme motions are often matched to the rates of intermolecular events such as substrate binding and product release. Beyond this role in progression through the reaction cycle, it has been suggested that enzyme dynamics may also promote the chemical step itself. Dihydrofolate reductase (DHFR) is a model enzyme for which dynamics have been proposed to aid in both substrate flux and catalysis. The G121V mutant of DHFR is a well studied form that exhibits a severe reduction in the rate of hydride transfer yet there remains dispute as to whether this defect is caused by altered structure, dynamics, or both. Here we address this by presenting an NMR study of the G121V mutant bound to reduced cofactor and the transition state inhibitor, methotrexate. NMR chemical shift markers demonstrate that this form predominantly adopts the closed conformation thereby allowing us to provide the first glimpse into the dynamics of a catalytically relevant complex. Based on 15N and 2H NMR spin relaxation, we find that the mutant complex has modest changes in ps-ns flexibility with most affected residues residing in the distal adenosine binding domain rather than the active site. Thus, aberrant ps-ns dynamics are likely not the main contributor to the decreased catalytic rate. The most dramatic effect of the mutation involves changes in µs-ms dynamics of the F-G and Met20 loops. Whereas loop motion is quenched in the wild type transition state inhibitor complex, the F-G and Met20 loops undergo excursions from the closed conformation in the mutant complex. These excursions serve to decrease the population of conformers having the correct active site configuration, thus providing an explanation for the G121V catalytic defect
    corecore