73 research outputs found

    Coupling tableau algorithms for expressive description logics with completion-based saturation procedures

    Get PDF
    Abstract. Nowadays, saturation-based reasoners for the OWL EL profile are able to handle large ontologies such as SNOMED very efficiently. However, saturation-based reasoning procedures become incomplete if the ontology is extended with axioms that use features of more expressive Description Logics, e.g., disjunctions. Tableau-based procedures, on the other hand, are not limited to a specific OWL profile, but even highly optimised reasoners might not be efficient enough to handle large ontologies such as SNOMED. In this paper, we present an approach for tightly coupling tableau-and saturation-based procedures that we implement in the OWL DL reasoner Konclude. Our detailed evaluation shows that this combination significantly improves the reasoning performance on a wide range of ontologies

    A Logic-Based Framework for Web Access Control Policies

    Get PDF
    With the widespread use of web services, there is a need for adequate security and privacy support to protect the sensitive information these services could provide. As a result, there has been a great interest in access control policy languages which accommodate large, open, distributed and heterogeneous environments like the Web. XACML has emerged as a popular access control language, but because of its rich expressiveness and informal semantics, it suffers from a) a lack of understanding of its formal properties, and b) a lack of automated, compile-time services that can detect errors in expressive, distributed and heterogeneous policies. In this dissertation, I present a logic-based framework for XACML that addresses the above issues. One component of the framework is a Datalog-based mapping for XACML v3.0 that provides a theoretical foundation for the language, namely: a concise logic-based semantics and complexity results for full XACML and various fragments. Additionally, my mapping discovers close relationships between XACML and other logic based languages such as the Flexible Authorization Framework. The second component of this framework provides a practical foundation for static analysis of expressive XACML policies. The analysis services detect semantic errors or differences between policies before they are deployed. To provide these services, I present a mapping from XACML to the Web Ontology Language (OWL), which is the standardized language for representing the semantics of information on the Web. In particular, I focus on the OWL-DL sub-language, which is a logic-based fragment of OWL. Finally, to demonstrate the practicality of using OWL-DL reasoners as policy analyzers, I have implemented an OWL-based XACML analyzer and performed extensive empirical evaluation using both real world and synthetic policy sets

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Formal Verification of Instruction Dependencies in Microprocessors

    Get PDF
    In microprocessors, achieving an efficient utilization of the execution units is a key factor in improving performance. However, maintaining an uninterrupted flow of instructions is a challenge due to the data and control dependencies between instructions of a program. Modern microprocessors employ aggressive optimizations trying to keep their execution units busy without violating inter-instruction dependencies. Such complex optimizations may cause subtle implementation flaws that can be hard to detect using conventional simulation-based verification techniques. Formal verification is known for its ability to discover design flaws that may go undetected using conventional verification techniques. However, with formal verification come two major challenges. First, the correctness of the implementation needs to be defined formally. Second, formal verification is often hard to apply at the scale of realistic implementations. In this thesis, we present a formal verification strategy to guarantee that a microprocessor implementation preserves both data and control dependencies among instructions. Throughout our strategy, we address the two major challenges associated with formal verification: correctness and scalability. We address the correctness challenge by specifying our correctness in the context of generic pipelines. Unlike conventional pipeline hazard rules, we make no distinction between the data and control aspects. Instead, we describe the relationship between a producer instruction and a consumer instruction in a way such that both instructions can speculatively read their source operands, speculatively write their results, and go out of their program order during execution. In addition to supporting branch and value prediction, our correctness criteria allow the implementation to discard (squash) or replay instructions while being executed. We address the scalability challenge in three ways: abstraction, decomposition, and induction. First, we state our inter-instruction dependency correctness criteria in terms of read and write operations without making reference to data values. Consequently, our correctness criteria can be verified for implementations with abstract datapaths. Second, we decompose our correctness criteria into a set of smaller obligations that are easier to verify. All these obligations can be expressed as properties within the Syntactically-Safe fragment of Linear Temporal Logic (SSLTL). Third, we introduce a technique to verify SSLTL properties by induction, and prove its soundness and completeness. To demonstrate our overall strategy, we verified a term-level model of an out-of-order speculative processor. The processor model implements register renaming using a P6-style reorder buffer and branch prediction with a hybrid (discard-replay) recovery mechanism. The verification obligations (expressed in SSLTL) are checked using a tool implementing our inductive technique. Our tool, named Tahrir, is built on top of a generic interface to SMT solvers and can be generally used for verifying SSLTL properties about infinite-state systems

    Proceedings of the 11th Workshop on Nonmonotonic Reasoning

    Get PDF
    These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The aim of this series is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related topics. As part of the program of the 11th workshop, we have assessed the status of the field and discussed issues such as: Significant recent achievements in the theory and automation of NMR; Critical short and long term goals for NMR; Emerging new research directions in NMR; Practical applications of NMR; Significance of NMR to knowledge representation and AI in general
    • …
    corecore