1,812 research outputs found

    Coupling limit order books and branching random walks

    Get PDF
    We consider a model for a one-sided limit order book proposed by Lakner et al. We show that it can be coupled with a branching random walk and use this coupling to answer a non-trivial question about the long-term behavior of the price. The coupling relies on a classical idea of enriching the state-space by artificially creating a filiation, in this context between orders of the book, that we believe has the potential of being useful for a broader class of models.Comment: Minor error in the proof of Theorem 1 corrected. Final version accepted for publication to Journal of Applied Probabilit

    Scaling limit of a limit order book model via the regenerative characterization of L\'evy trees

    Get PDF
    We consider the following Markovian dynamic on point processes: at constant rate and with equal probability, either the rightmost atom of the current configuration is removed, or a new atom is added at a random distance from the rightmost atom. Interpreting atoms as limit buy orders, this process was introduced by Lakner et al. to model a one-sided limit order book. We consider this model in the regime where the total number of orders converges to a reflected Brownian motion, and complement the results of Lakner et al. by showing that, in the case where the mean displacement at which a new order is added is positive, the measure-valued process describing the whole limit order book converges to a simple functional of this reflected Brownian motion. Our results make it possible to derive useful and explicit approximations on various quantities of interest such as the depth or the total value of the book. Our approach leverages an unexpected connection with L\'evy trees. More precisely, the cornerstone of our approach is the regenerative characterization of L\'evy trees due to Weill, which provides an elegant proof strategy which we unfold.Comment: Accepted for publication in stochastic system

    Some harmonic functions for killed Markov branching processes with immigration and culling

    Full text link
    For a continuous-time Bienaym\'e-Galton-Watson process, XX, with immigration and culling, 00 as an absorbing state, call XqX^q the process that results from killing XX at rate q(0,)q\in (0,\infty), followed by stopping it on extinction or explosion. Then an explicit identification of the relevant harmonic functions of XqX^q allows to determine the Laplace transforms (at argument qq) of the first passage times downwards and of the explosion time for XX. Strictly speaking, this is accomplished only when the killing rate qq is sufficiently large (but always when the branching mechanism is not supercritical or if there is no culling). In particular, taking the limit q0q\downarrow 0 (whenever possible) yields the passage downwards and explosion probabilities for XX. A number of other consequences of these results are presented

    A particle system with cooperative branching and coalescence

    Full text link
    In this paper, we introduce a one-dimensional model of particles performing independent random walks, where only pairs of particles can produce offspring ("cooperative branching"), and particles that land on an occupied site merge with the particle present on that site ("coalescence"). We show that the system undergoes a phase transition as the branching rate is increased. For small branching rates, the upper invariant law is trivial, and the process started with finitely many particles a.s. ends up with a single particle. Both statements are not true for high branching rates. An interesting feature of the process is that the spectral gap is zero even for low branching rates. Indeed, if the branching rate is small enough, then we show that for the process started in the fully occupied state, the particle density decays as one over the square root of time, and the same is true for the decay of the probability that the process still has more than one particle at a later time if it started with two particles.Comment: Published at http://dx.doi.org/10.1214/14-AAP1032 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Strong disorder RG approach of random systems

    Full text link
    There is a large variety of quantum and classical systems in which the quenched disorder plays a dominant r\^ole over quantum, thermal, or stochastic fluctuations : these systems display strong spatial heterogeneities, and many averaged observables are actually governed by rare regions. A unifying approach to treat the dynamical and/or static singularities of these systems has emerged recently, following the pioneering RG idea by Ma and Dasgupta and the detailed analysis by Fisher who showed that the Ma-Dasgupta RG rules yield asymptotic exact results if the broadness of the disorder grows indefinitely at large scales. Here we report these new developments by starting with an introduction of the main ingredients of the strong disorder RG method. We describe the basic properties of infinite disorder fixed points, which are realized at critical points, and of strong disorder fixed points, which control the singular behaviors in the Griffiths-phases. We then review in detail applications of the RG method to various disordered models, either (i) quantum models, such as random spin chains, ladders and higher dimensional spin systems, or (ii) classical models, such as diffusion in a random potential, equilibrium at low temperature and coarsening dynamics of classical random spin chains, trap models, delocalization transition of a random polymer from an interface, driven lattice gases and reaction diffusion models in the presence of quenched disorder. For several one-dimensional systems, the Ma-Dasgupta RG rules yields very detailed analytical results, whereas for other, mainly higher dimensional problems, the RG rules have to be implemented numerically. If available, the strong disorder RG results are compared with another, exact or numerical calculations.Comment: review article, 195 pages, 36 figures; final version to be published in Physics Report

    Critical phenomena in complex networks

    Full text link
    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.Comment: Review article, 79 pages, 43 figures, 1 table, 508 references, extende

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review
    corecore