82 research outputs found

    Entropic Wasserstein Gradient Flows

    Full text link
    This article details a novel numerical scheme to approximate gradient flows for optimal transport (i.e. Wasserstein) metrics. These flows have proved useful to tackle theoretically and numerically non-linear diffusion equations that model for instance porous media or crowd evolutions. These gradient flows define a suitable notion of weak solutions for these evolutions and they can be approximated in a stable way using discrete flows. These discrete flows are implicit Euler time stepping according to the Wasserstein metric. A bottleneck of these approaches is the high computational load induced by the resolution of each step. Indeed, this corresponds to the resolution of a convex optimization problem involving a Wasserstein distance to the previous iterate. Following several recent works on the approximation of Wasserstein distances, we consider a discrete flow induced by an entropic regularization of the transportation coupling. This entropic regularization allows one to trade the initial Wasserstein fidelity term for a Kulback-Leibler divergence, which is easier to deal with numerically. We show how KL proximal schemes, and in particular Dykstra's algorithm, can be used to compute each step of the regularized flow. The resulting algorithm is both fast, parallelizable and versatile, because it only requires multiplications by a Gibbs kernel. On Euclidean domains discretized on an uniform grid, this corresponds to a linear filtering (for instance a Gaussian filtering when cc is the squared Euclidean distance) which can be computed in nearly linear time. On more general domains, such as (possibly non-convex) shapes or on manifolds discretized by a triangular mesh, following a recently proposed numerical scheme for optimal transport, this Gibbs kernel multiplication is approximated by a short-time heat diffusion

    Mixed-integer linearity in nonlinear optimization: a trust region approach

    Full text link
    Bringing together nonlinear optimization with mixed-integer linear constraints enables versatile modeling, but poses significant computational challenges. We investigate a method to solve these problems based on sequential mixed-integer linearization with trust region safeguard, computing feasible iterates via calls to a generic mixed-integer linear solver. Convergence to critical, possibly suboptimal, feasible points is established for arbitrary starting points. Finally, we present numerical applications in nonsmooth optimal control and optimal network design and operation.Comment: 17 pages, 3 figures, 2 table

    Continuous Methods for Elliptic Inverse Problems

    Get PDF
    Numerous mathematical models in applied and industrial mathematics take the form of a partial differential equation involving certain variable coefficients. These coefficients are known and they often describe some physical properties of the model. The direct problem in this context is to solve the partial differential equation. By contrast, an inverse problem asks for the identification of the variable coefficient when a certain measurement of a solution of the partial differential equation is available. A commonly used approach to inverse problems is to solve an optimization problem whose solution is an approximation of the sought coefficient. Such optimization problems are typically solved by discrete iterative schemes. It turns out that most known iterative schemes have their continuous counterparts given in terms of dynamical systems. However, such differential equations are usually solved by specific differential equation solvers. The primary objective of this thesis is to test the feasibility of differential equations based solvers for solving elliptic inverse problems. We will use differential equation solvers such as Euler\u27s Method, Trapezoidal Method, Runge-Kutta Method and Adams-Bashforth Method. In addition, these solvers will also be compared to built-in MATLAB ODE solvers. The performance and accuracy of these methods to solve inverse problems will be thoroughly discussed
    • …
    corecore