11,683 research outputs found

    Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems

    Get PDF

    An Arnoldi-frontal approach for the stability analysis of flows in a collapsible channel

    Get PDF
    In this paper, we present a new approach based on a combination of the Arnoldi and frontal methods for solving large sparse asymmetric and generalized complex eigenvalue problems. The new eigensolver seeks the most unstable eigensolution in the Krylov subspace and makes use of the efficiency of the frontal solver developed for the finite element methods. The approach is used for a stability analysis of flows in a collapsible channel and is found to significantly improve the computational efficiency compared to the traditionally used QZ solver or a standard Arnoldi method. With the new approach, we are able to validate the previous results obtained either on a much coarser mesh or estimated from unsteady simulations. New neutral stability solutions of the system have been obtained which are beyond the limits of previously used methods

    Error bounds on block Gauss Seidel solutions of coupled\ud multiphysics problems

    Get PDF
    Mathematical models in many fields often consist of coupled sub–models, each of which describe a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub–models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non–linear coupled fluid–temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration.\ud \ud Copyright c 2000 John Wiley & Sons, Ltd

    Vibration problem of a spherical tank containing jet propellant: numerical simulations

    No full text
    This document is the final report on the joint research project on vibration problem of a spherical tank containing jet propellant between IHI, Japan and SES, University of Southampton, UK. The background of the project is described. The fundamental principles and numerical method used in numerical simulations are presented. The detailed FEA models for each studied cases are given. The calculation results are presented using tables, curves, figures as well as the attached data files. The available experiment results are listed to compare with the numerical calculations. The calculation results show a fundamental agreement with the experiment results. The numerical analysis confirms that:1)Due to water – tank interaction, the natural frequencies of the water – tank system are decreased with the water level increase. For the 25% water level, the natural frequencies, especially heave mode frequency, shows a significant decrease compared with the empty case. However, with continuing increase the filed water more than 25% level, the decrease gradient of the natural frequencies gradually tends to zero. In the 100% water case, the natural frequency of heave mode is about 200 Hz which can not equal zero.2)Considering free surface wave effect produces a lot of sloshing modes of very low frequencies compared with the natural frequencies of the dry tank structure. Therefore, for dynamic response analysis with high frequency excitations, the free surface wave may be neglected. However, to assess loads caused by sloshing modes, the free surface waves have to be considered.3)There exist relative big deformations at the four tank support places in several vibration modes, which may produce a large local stress at support places to cause the product fail in vibration environment. A strengthen local design at the support places is needed.4)The dynamic response results are affected by damping coefficients of all modes used in the dynamic response analysis. The damping coefficients are approximately presented and therefore, the numerical results are good reference for practical designs.The report confirms that the original purpose of this joint research project has well completed by IHI and SES

    A summary of NASTRAN fluid/structure interaction capabilities

    Get PDF
    A summary of fluid/structure interaction capabilities for the NASTRAN computer program is presented. Indirect applications of the program towards solving this class of problem were concentrated on. For completeness and comparitive purposes, direct usage of NASTRAN is briefly discussed. The solution technology addresses both steady state and transient dynamic response problems
    • …
    corecore