421 research outputs found

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    A Framework for Human Motion Strategy Identification and Analysis

    Get PDF
    The human body has many biomechanical degrees of freedom and thus multiple movement strategies can be employed to execute any given task. Automated identification and classification of these movement strategies have potential applications in various fields including sports performance research, rehabilitation, and injury prevention. For example, in the field of rehabilitation, the choice of movement strategy can impact joint loading patterns and risk of injury. The problem of identifying movement strategies is related to the problem of classifying variations in the observed motions. When differences between two movement trajectories performing the same task are large, they are considered to be different movement strategies. Conversely, when the differences between observed movements are small, they are considered to be variations of the same movement strategy. In the simplest scenario a movement strategy can represent a cluster of similar movement trajectories, but in more complicated scenarios differences in movements could also lie on a continuum. The goal of this thesis is to develop a computational framework to automatically recognize different movement strategies for performing a task and to identify what makes each strategy different. The proposed framework utilizes Gaussian Process Dynamical Models (GPDM) to convert human motion trajectories from their original high dimensional representation to a trajectory in a lower dimensional space (i.e. the latent space). The dimensionality of the latent space is determined by iteratively increasing the dimensionality until the reduction in reconstruction error between iterations becomes small. Then, the lower dimensional trajectories are clustered using a Hidden Markov Model (HMM) clustering algorithm to identify movement strategies in an unsupervised manner. Next, we introduce an HMM-based technique for detecting differences in signals between two HMM models. This technique is used to compare latent space variables between the low-dimensional trajectory models as well as differences in degrees-of-freedom (DoF) between the corresponding high-dimensional (original) trajectory models. Then, through correlating latent variable and DoF differences movement synergies are discovered. To validate the proposed framework, it was tested on 3 different datasets – a synthetic dataset, a real labeled motion capture dataset, and an unlabeled motion capture dataset. The proposed framework achieved higher classification accuracy against competing algorithms (Joint Component Vector and Kinematic Synergies) where labels were known apriori. Additionally, the proposed algorithm showed that it was able to discover strategies that were not known apriori and how the strategies differed

    Biomechanical Locomotion Heterogeneity in Synthetic Crowds

    Get PDF
    Synthetic crowd simulation combines rule sets at different conceptual layers to represent the dynamic nature of crowds while adhering to basic principles of human steering, such as collision avoidance and goal completion. In this dissertation, I explore synthetic crowd simulation at the steering layer using a critical approach to define the central theme of the work, the impact of model representation and agent diversity in crowds. At the steering layer, simulated agents make regular decisions, or actions, related to steering which are often responsible for the emergent behaviours found in the macro-scale crowd. Because of this bottom-up impact of a steering model's defining rule-set, I postulate that biomechanics and diverse biomechanics may alter the outcomes of dynamic synthetic-crowds-based outcomes. This would mean that an assumption of normativity and/or homogeneity among simulated agents and their mobility would provide an inaccurate representation of a scenario. If these results are then used to make real world decisions, say via policy or design, then those populations not represented in the simulated scenario may experience a lack of representation in the actualization of those decisions. A focused literature review shows that applications of both biomechanics and diverse locomotion representation at this layer of modelling are very narrow and often not present. I respond to the narrowness of this representation by addressing both biomechanics and heterogeneity separately. To address the question of performance and importance of locomotion biomechanics in crowd simulation, I use a large scale comparative approach. The industry standard synthetic crowd models are tested under a battery of benchmarks derived from prior work in comparative analysis of synthetic crowds as well as new scenarios derived from built environments. To address the question of the importance of heterogeneity in locomotion biomechanics, I define tiers of impact in the multi-agent crowds model at the steering layer--from the action space, to the agent space, to the crowds space. To this end, additional models and layers are developed to address the modelling and application of heterogeneous locomotion biomechanics in synthetic crowds. The results of both studies form a research arc which shows that the biomechanics in steering models provides important fidelity in several applications and that heterogeneity in the model of locomotion biomechanics directly impacts both qualitative and quantitative synthetic crowds outcomes. As well, systems, approaches, and pitfalls regarding the analysis of steering model and human mobility diversity are described

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios

    Recognizing complex faces and gaits via novel probabilistic models

    Get PDF
    In the field of computer vision, developing automated systems to recognize people under unconstrained scenarios is a partially solved problem. In unconstrained sce- narios a number of common variations and complexities such as occlusion, illumi- nation, cluttered background and so on impose vast uncertainty to the recognition process. Among the various biometrics that have been emerging recently, this dissertation focus on two of them namely face and gait recognition. Firstly we address the problem of recognizing faces with major occlusions amidst other variations such as pose, scale, expression and illumination using a novel PRObabilistic Component based Interpretation Model (PROCIM) inspired by key psychophysical principles that are closely related to reasoning under uncertainty. The model basically employs Bayesian Networks to establish, learn, interpret and exploit intrinsic similarity mappings from the face domain. Then, by incorporating e cient inference strategies, robust decisions are made for successfully recognizing faces under uncertainty. PROCIM reports improved recognition rates over recent approaches. Secondly we address the newly upcoming gait recognition problem and show that PROCIM can be easily adapted to the gait domain as well. We scienti cally de ne and formulate sub-gaits and propose a novel modular training scheme to e ciently learn subtle sub-gait characteristics from the gait domain. Our results show that the proposed model is robust to several uncertainties and yields sig- ni cant recognition performance. Apart from PROCIM, nally we show how a simple component based gait reasoning can be coherently modeled using the re- cently prominent Markov Logic Networks (MLNs) by intuitively fusing imaging, logic and graphs. We have discovered that face and gait domains exhibit interesting similarity map- pings between object entities and their components. We have proposed intuitive probabilistic methods to model these mappings to perform recognition under vari- ous uncertainty elements. Extensive experimental validations justi es the robust- ness of the proposed methods over the state-of-the-art techniques.

    Artificial Intelligence for Data Analysis and Signal Processing

    Get PDF
    Artificial intelligence, or AI, currently encompasses a huge variety of fields, from areas such as logical reasoning and perception, to specific tasks such as game playing, language processing, theorem proving, and diagnosing diseases. It is clear that systems with human-level intelligence (or even better) would have a huge impact on our everyday lives and on the future course of evolution, as it is already happening in many ways. In this research AI techniques have been introduced and applied in several clinical and real world scenarios, with particular focus on deep learning methods. A human gait identification system based on the analysis of inertial signals has been developed, leading to misclassification rates smaller than 0.15%. Advanced deep learning architectures have been also investigated to tackle the problem of atrial fibrillation detection from short length and noisy electrocardiographic signals. The results show a clear improvement provided by representation learning over a knowledge-based approach. Another important clinical challenge, both for the patient and on-board automatic alarm systems, is to detect with reasonable advance the patterns leading to risky situations, allowing the patient to take therapeutic decisions on the basis of future instead of current information. This problem has been specifically addressed for the prediction of critical hypo/hyperglycemic episodes from continuous glucose monitoring devices, carrying out a comparative analysis among the most successful methods for glucose event prediction. This dissertation also shows evidence of the benefits of learning algorithms for vehicular traffic anomaly detection, through the use of a statistical Bayesian framework, and for the optimization of video streaming user experience, implementing an intelligent adaptation engine for video streaming clients. The proposed solution explores the promising field of deep learning methods integrated with reinforcement learning schema, showing its benefits against other state of the art approaches. The great knowledge transfer capability of artificial intelligence methods and the benefits of representation learning systems stand out from this research, representing the common thread among all the presented research fields
    corecore