412 research outputs found

    Locally Solvable Tasks and the Limitations of Valency Arguments

    Get PDF
    An elegant strategy for proving impossibility results in distributed computing was introduced in the celebrated FLP consensus impossibility proof. This strategy is local in nature as at each stage, one configuration of a hypothetical protocol for consensus is considered, together with future valencies of possible extensions. This proof strategy has been used in numerous situations related to consensus, leading one to wonder why it has not been used in impossibility results of two other well-known tasks: set agreement and renaming. This paper provides an explanation of why impossibility proofs of these tasks have been of a global nature. It shows that a protocol can always solve such tasks locally, in the following sense. Given a configuration and all its future valencies, if a single successor configuration is selected, then the protocol can reveal all decisions in this branch of executions, satisfying the task specification. This result is shown for both set agreement and renaming, implying that there are no local impossibility proofs for these tasks

    Wait-Free Solvability of Equality Negation Tasks

    Get PDF
    We introduce a family of tasks for n processes, as a generalization of the two process equality negation task of Lo and Hadzilacos (SICOMP 2000). Each process starts the computation with a private input value taken from a finite set of possible inputs. After communicating with the other processes using immediate snapshots, the process must decide on a binary output value, 0 or 1. The specification of the task is the following: in an execution, if the set of input values is large enough, the processes should agree on the same output; if the set of inputs is small enough, the processes should disagree; and in-between these two cases, any output is allowed. Formally, this specification depends on two threshold parameters k and l, with k<l, indicating when the cardinality of the set of inputs becomes "small" or "large", respectively. We study the solvability of this task depending on those two parameters. First, we show that the task is solvable whenever k+2 <= l. For the remaining cases (l = k+1), we use various combinatorial topology techniques to obtain two impossibility results: the task is unsolvable if either k <= n/2 or n-k is odd. The remaining cases are still open

    Why Extension-Based Proofs Fail

    Full text link
    We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k > 1 processes in a wait-free manner in certain asynchronous models. However, it was unknown whether proofs based on simpler techniques were possible. We show that this impossibility result cannot be obtained for one of these models by an extension-based proof and, hence, extension-based proofs are limited in power.Comment: This version of the paper is for the NIS model. Previous versions of the paper are for the NIIS mode

    How to Elect a Leader Faster than a Tournament

    Full text link
    The problem of electing a leader from among nn contenders is one of the fundamental questions in distributed computing. In its simplest formulation, the task is as follows: given nn processors, all participants must eventually return a win or lose indication, such that a single contender may win. Despite a considerable amount of work on leader election, the following question is still open: can we elect a leader in an asynchronous fault-prone system faster than just running a Θ(logn)\Theta(\log n)-time tournament, against a strong adaptive adversary? In this paper, we answer this question in the affirmative, improving on a decades-old upper bound. We introduce two new algorithmic ideas to reduce the time complexity of electing a leader to O(logn)O(\log^* n), using O(n2)O(n^2) point-to-point messages. A non-trivial application of our algorithm is a new upper bound for the tight renaming problem, assigning nn items to the nn participants in expected O(log2n)O(\log^2 n) time and O(n2)O(n^2) messages. We complement our results with lower bound of Ω(n2)\Omega(n^2) messages for solving these two problems, closing the question of their message complexity

    General Tasks and Extension-Based Proofs

    Full text link
    The concept of extension-based proofs models the idea of a valency argument which is widely used in distributed computing. Extension-based proofs are limited in power: it has been shown that there is no extension-based proof of the impossibility of a wait-free protocol for (n,k)(n,k)-set agreement among n>k2n > k \geq 2 processes. A discussion of a restricted type of reduction has shown that there are no extension-based proofs of the impossibility of wait-free protocols for some other distributed computing problems. We extend the previous result to general reductions that allow multiple instances of tasks. The techniques used in the previous work are designed for certain tasks, such as the (n,k)(n,k)-set agreement task. We give a necessary and sufficient condition for general colorless tasks to have no extension-based proofs of the impossibility of wait-free protocols, and show that different types of extension-based proof are equivalent in power for colorless tasks. Using this necessary and sufficient condition, the result about reductions can be understood from a topological perspective

    Fault Tolerant Coloring of the Asynchronous Cycle

    Get PDF
    corecore