4,350 research outputs found

    Symmetry Principle Preserving and Infinity Free Regularization and renormalization of quantum field theories and the mass gap

    Get PDF
    Through defining irreducible loop integrals (ILIs), a set of consistency conditions for the regularized (quadratically and logarithmically) divergent ILIs are obtained to maintain the generalized Ward identities of gauge invariance in non-Abelian gauge theories. Overlapping UV divergences are explicitly shown to be factorizable in the ILIs and be harmless via suitable subtractions. A new regularization and renormalization method is presented in the initial space-time dimension of the theory. The procedure respects unitarity and causality. Of interest, the method leads to an infinity free renormalization and meanwhile maintains the symmetry principles of the original theory except the intrinsic mass scale caused conformal scaling symmetry breaking and the anomaly induced symmetry breaking. Quantum field theories (QFTs) regularized through the new method are well defined and governed by a physically meaningful characteristic energy scale (CES) McM_c and a physically interesting sliding energy scale (SES) μs\mu_s which can run from μs∼Mc\mu_s \sim M_c to a dynamically generated mass gap μs=μc\mu_s=\mu_c or to μs=0\mu_s =0 in the absence of mass gap and infrared (IR) problem. It is strongly indicated that the conformal scaling symmetry and its breaking mechanism play an important role for understanding the mass gap and quark confinement.Comment: 59 pages, Revtex, 4 figures, 1 table, Erratum added, published versio

    Fermionic Glauber Operators and Quark Reggeization

    Get PDF
    We derive, in the framework of soft-collinear effective field theory (SCET), a Lagrangian describing the tt-channel exchange of Glauber quarks in the Regge limit. The Glauber quarks are not dynamical, but are incorporated through non-local fermionic potential operators. These operators are power suppressed in ∣t∣/s|t|/s relative to those describing Glauber gluon exchange, but give the first non-vanishing contributions in the Regge limit to processes such as qqˉ→ggq\bar q \to gg and qqˉ→γγq\bar q \to \gamma \gamma. They therefore represent an interesting subset of power corrections to study. The structure of the operators, which describe certain soft and collinear emissions to all orders through Wilson lines, is derived from the symmetries of the effective theory combined with constraints from power and mass dimension counting, as well as through explicit matching calculations. Lightcone singularities in the fermionic potentials are regulated using a rapidity regulator, whose corresponding renormalization group evolution gives rise to the Reggeization of the quark at the amplitude level and the BFKL equation at the cross section level. We verify this at one-loop, deriving the Regge trajectory of the quark in the 33 color channel, as well as the leading logarithmic BFKL equation. Results in the 6ˉ\bar 6 and 1515 color channels are obtained by the simultaneous exchange of a Glauber quark and a Glauber gluon. SCET with quark and gluon Glauber operators therefore provides a framework to systematically study the structure of QCD amplitudes in the Regge limit, and derive constraints on higher order amplitudes.Comment: 31 pages, many figure

    Diagrammatic proof of the BCFW recursion relation for gluon amplitudes in QCD

    Get PDF
    We present a proof of the Britto-Cachazo-Feng-Witten tree-level recursion relation for gluon amplitudes in QCD, based on a direct equivalence between BCFW decompositions and Feynman diagrams. We demonstrate that this equivalence can be made explicit when working in a convenient gauge. We exhibit that gauge invariance and the particular structure of Yang-Mills vertices guarantees the validity of the BCFW construction.Comment: 24 pages, 33 figure

    Renormalization group scaling in nonrelativistic QCD

    Get PDF
    We discuss the matching conditions and renormalization group evolution of non-relativistic QCD. A variant of the conventional MS-bar scheme is proposed in which a subtraction velocity nu is used rather than a subtraction scale mu. We derive a novel renormalization group equation in velocity space which can be used to sum logarithms of v in the effective theory. We apply our method to several examples. In particular we show that our formulation correctly reproduces the two-loop anomalous dimension of the heavy quark production current near threshold.Comment: (27 pages, revtex
    • …
    corecore