347 research outputs found

    Computational Complexity of Synchronization under Regular Constraints

    Get PDF
    Many variations of synchronization of finite automata have been studied in the previous decades. Here, we suggest studying the question if synchronizing words exist that belong to some fixed constraint language, given by some partial finite automaton called constraint automaton. We show that this synchronization problem becomes PSPACE-complete even for some constraint automata with two states and a ternary alphabet. In addition, we characterize constraint automata with arbitrarily many states for which the constrained synchronization problem is polynomial-time solvable. We classify the complexity of the constrained synchronization problem for constraint automata with two states and two or three letters completely and lift those results to larger classes of finite automata

    On the Complexity of the Word Problem for Automaton Semigroups and Automaton Groups

    Full text link
    In this paper, we study the word problem for automaton semigroups and automaton groups from a complexity point of view. As an intermediate concept between automaton semigroups and automaton groups, we introduce automaton-inverse semigroups, which are generated by partial, yet invertible automata. We show that there is an automaton-inverse semigroup and, thus, an automaton semigroup with a PSPACE-complete word problem. We also show that there is an automaton group for which the word problem with a single rational constraint is PSPACE-complete. Additionally, we provide simpler constructions for the uniform word problems of these classes. For the uniform word problem for automaton groups (without rational constraints), we show NL-hardness. Finally, we investigate a question asked by Cain about a better upper bound for the length of a word on which two distinct elements of an automaton semigroup must act differently

    Randomized Sliding Window Algorithms for Regular Languages

    Get PDF
    A sliding window algorithm receives a stream of symbols and has to output at each time instant a certain value which only depends on the last n symbols. If the algorithm is randomized, then at each time instant it produces an incorrect output with probability at most epsilon, which is a constant error bound. This work proposes a more relaxed definition of correctness which is parameterized by the error bound epsilon and the failure ratio phi: a randomized sliding window algorithm is required to err with probability at most epsilon at a portion of 1-phi of all time instants of an input stream. This work continues the investigation of sliding window algorithms for regular languages. In previous works a trichotomy theorem was shown for deterministic algorithms: the optimal space complexity is either constant, logarithmic or linear in the window size. The main results of this paper concerns three natural settings (randomized algorithms with failure ratio zero and randomized/deterministic algorithms with bounded failure ratio) and provide natural language theoretic characterizations of the space complexity classes

    Modeling and verifying the FlexRay physical layer protocol with reachability checking of timed automata

    Get PDF
    In this thesis, I report on the verification of the resilience of the FlexRay automotive bus protocol's physical layer protocol against glitches during message transmission and drifting clocks. This entailed modeling a significant part of this industrially used communictation protocol and the underlying hardware as well as the possible error scenarios in fine detail. Verifying such a complex model with model-checking led me to the development of data-structures and algorithms able to handle the associated complexity using only reasonable resources. This thesis presents such data-structures and algorithms for reachability checking of timed automata. It also present modeling principles enabling the construction of timed automata models that can be efficiently checked, as well as the models arrived at. Finally, it reports on the verified resilience of FlexRay's physical layer protocol against specific patterns of glitches under varying assumptions about the underlying hardware, like clock drift.In dieser Dissertation berichte ich über den Nachweis der Resilienz des Bitübertragungsprotokolls für die physikalische Schicht des FlexRay-Fahrzeugbusprotokolls gegenüber Übertragungsfehlern und Uhrenverschiebung. Dafür wurde es notwendig, einen signifikanten Teil dieses industriell genutzten Kommunikationsprotokolls mit seiner Hardwareumgebung und die möglichen Fehlerszenarien detailliert zu modellieren. Ein so komplexes Modell mittels Modellprüfung zu überprüfen führte mich zur Entwicklung von Datenstrukturen und Algorithmen, die die damit verbundene Komplexität mit vernünftigen Ressourcenanforderungen bewältigen können. Diese Dissertation stellt solche Datenstrukturen und Algorithmen zur Erreichbarkeitsprüfung gezeiteter Automaten vor. Sie stellt auch Modellierungsprinzipien vor, die es ermöglichen, Modelle in Form gezeiteter Automaten zu konstruieren, die effizient überprüft werden können, sowie die erstellten Modelle. Schließlich berichtet sie über die überprüfte Resilienz des FlexRay-Bitübertragungsprotokolls gegenüber spezifischen Übertragungsfehlermustern unter verschiedenen Annahmen über die Hardwareumgebung, wie etwa die Uhrenverschiebung.DFG: SFB/TRR 14 "AVACS - Automatische Verifikation und Analyse komplexer Systeme

    Advanced flight control system study

    Get PDF
    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts
    corecore