809 research outputs found

    Power law violation of the area law in quantum spin chains

    Get PDF
    The sub-volume scaling of the entanglement entropy with the system's size, nn, has been a subject of vigorous study in the last decade [1]. The area law provably holds for gapped one dimensional systems [2] and it was believed to be violated by at most a factor of log(n)\log\left(n\right) in physically reasonable models such as critical systems. In this paper, we generalize the spin1-1 model of Bravyi et al [3] to all integer spin-ss chains, whereby we introduce a class of exactly solvable models that are physical and exhibit signatures of criticality, yet violate the area law by a power law. The proposed Hamiltonian is local and translationally invariant in the bulk. We prove that it is frustration free and has a unique ground state. Moreover, we prove that the energy gap scales as ncn^{-c}, where using the theory of Brownian excursions, we prove c2c\ge2. This rules out the possibility of these models being described by a conformal field theory. We analytically show that the Schmidt rank grows exponentially with nn and that the half-chain entanglement entropy to the leading order scales as n\sqrt{n} (Eq. 16). Geometrically, the ground state is seen as a uniform superposition of all ss-colored Motzkin walks. Lastly, we introduce an external field which allows us to remove the boundary terms yet retain the desired properties of the model. Our techniques for obtaining the asymptotic form of the entanglement entropy, the gap upper bound and the self-contained expositions of the combinatorial techniques, more akin to lattice paths, may be of independent interest.Comment: v3: 10+33 pages. In the PNAS publication, the abstract was rewritten and title changed to "Supercritical entanglement in local systems: Counterexample to the area law for quantum matter". The content is same otherwise. v2: a section was added with an external field to include a model with no boundary terms (open and closed chain). Asymptotic technique is improved. v1:37 pages, 10 figures. Proc. Natl. Acad. Sci. USA, (Nov. 2016

    Criticality without frustration for quantum spin-1 chains

    Full text link
    Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right parentheses separated by empty spaces. Entanglement entropy of one half of the chain scales as log(n)/2 + O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest.Comment: 11 pages, 2 figures. Version 2: minor changes in the proof of Lemma

    On the sub-permutations of pattern avoiding permutations

    Full text link
    There is a deep connection between permutations and trees. Certain sub-structures of permutations, called sub-permutations, bijectively map to sub-trees of binary increasing trees. This opens a powerful tool set to study enumerative and probabilistic properties of sub-permutations and to investigate the relationships between 'local' and 'global' features using the concept of pattern avoidance. First, given a pattern {\mu}, we study how the avoidance of {\mu} in a permutation {\pi} affects the presence of other patterns in the sub-permutations of {\pi}. More precisely, considering patterns of length 3, we solve instances of the following problem: given a class of permutations K and a pattern {\mu}, we ask for the number of permutations πAvn(μ)\pi \in Av_n(\mu) whose sub-permutations in K satisfy certain additional constraints on their size. Second, we study the probability for a generic pattern to be contained in a random permutation {\pi} of size n without being present in the sub-permutations of {\pi} generated by the entry 1kn1 \leq k \leq n. These theoretical results can be useful to define efficient randomized pattern-search procedures based on classical algorithms of pattern-recognition, while the general problem of pattern-search is NP-complete
    corecore