5,665 research outputs found

    Self-avoiding walks and connective constants

    Full text link
    The connective constant μ(G)\mu(G) of a quasi-transitive graph GG is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on GG from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph GG. ∙\bullet We present upper and lower bounds for μ\mu in terms of the vertex-degree and girth of a transitive graph. ∙\bullet We discuss the question of whether μ≥ϕ\mu\ge\phi for transitive cubic graphs (where ϕ\phi denotes the golden mean), and we introduce the Fisher transformation for SAWs (that is, the replacement of vertices by triangles). ∙\bullet We present strict inequalities for the connective constants μ(G)\mu(G) of transitive graphs GG, as GG varies. ∙\bullet As a consequence of the last, the connective constant of a Cayley graph of a finitely generated group decreases strictly when a new relator is added, and increases strictly when a non-trivial group element is declared to be a further generator. ∙\bullet We describe so-called graph height functions within an account of "bridges" for quasi-transitive graphs, and indicate that the bridge constant equals the connective constant when the graph has a unimodular graph height function. ∙\bullet A partial answer is given to the question of the locality of connective constants, based around the existence of unimodular graph height functions. ∙\bullet Examples are presented of Cayley graphs of finitely presented groups that possess graph height functions (that are, in addition, harmonic and unimodular), and that do not. ∙\bullet The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with arXiv:1304.721

    Hamiltonian Cycles on a Random Three-coordinate Lattice

    Full text link
    Consider a random three-coordinate lattice of spherical topology having 2v vertices and being densely covered by a single closed, self-avoiding walk, i.e. being equipped with a Hamiltonian cycle. We determine the number of such objects as a function of v. Furthermore we express the partition function of the corresponding statistical model as an elliptic integral.Comment: 10 pages, LaTeX, 3 eps-figures, one reference adde

    Carne--Varopoulos bounds for centered random walks

    Full text link
    We extend the Carne--Varopoulos upper bound on the probability transitions of a Markov chain to a certain class of nonreversible processes by introducing the definition of a ``centering measure.'' In the case of random walks on a group, we study the connections between different notions of centering.Comment: Published at http://dx.doi.org/10.1214/009117906000000052 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multi-Scale Jacobi Method for Anderson Localization

    Full text link
    A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization [arXiv:1403.7837].Comment: 34 pages, 8 figures, clarifications and corrections for published version; more detail in Section 4.

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for q≥αd+βq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large β=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree

    Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

    Get PDF
    The six-vertex model in statistical physics is a weighted generalization of the ice model on Z^2 (i.e., Eulerian orientations) and the zero-temperature three-state Potts model (i.e., proper three-colorings). The phase diagram of the model represents its physical properties and suggests where local Markov chains will be efficient. In this paper, we analyze the mixing time of Glauber dynamics for the six-vertex model in the ordered phases. Specifically, we show that for all Boltzmann weights in the ferroelectric phase, there exist boundary conditions such that local Markov chains require exponential time to converge to equilibrium. This is the first rigorous result bounding the mixing time of Glauber dynamics in the ferroelectric phase. Our analysis demonstrates a fundamental connection between correlated random walks and the dynamics of intersecting lattice path models (or routings). We analyze the Glauber dynamics for the six-vertex model with free boundary conditions in the antiferroelectric phase and significantly extend the region for which local Markov chains are known to be slow mixing. This result relies on a Peierls argument and novel properties of weighted non-backtracking walks
    • …
    corecore