16,022 research outputs found

    People Matching for Transportation Planning Using Optimized Features and Texel Camera Data for Sequential Estimation

    Get PDF
    This thesis explores pattern recognition in the dynamic setting of public transportation, such as a bus, as people enter and later exit from a doorway. Matching the entrance and exit of each individual provides accurate information about individual riders such as how long a person is on a bus and which stops the person uses. At a higher level, matching exits to entries provides information about the distribution of traffic flow across the whole transportation system. A texel camera is implemented and multiple measures of people are made where the depth and color data are generated. A large number of features are generated and the sequential floating forward selection (SFFS) algorithm is used for selecting the optimized features. Criterion functions using marginal accuracy and maximization of minimum normalized Mahalanobis distance are designed and compared. Because of the particular case of the bus environment, which is a sequential estimation problem, a trellis optimization algorithm is designed based on a sequence of measurements from the texel camera. Since the number of states in the trellis grows exponentially with the number of people currently on the bus, a beam search pruning technique is employed to manage the computational and memory load. Experimental results using real texel camera measurements show good results for 68 people exiting from an initially full bus in a randomized order. In a bus route simulation where a true traffic flow distribution is used to randomly draw entry and exit events for simulated riders, the proposed sequential estimation algorithm produces an estimated traffic flow distribution which provides an excellent match to the true distribution

    People Matching for Transportation Planning Using Texel Camera Data for Sequential Estimation

    Get PDF
    This paper addresses automatic people matching in the dynamic setting of public transportation, such as a bus, as people enter and then at some later time exit from a doorway. Matching a person entering to the same person exiting at a later time provides accurate information about individual riders, such as how long a person is on a bus and the associated stops the person uses. At a higher level, matching exits to previous entry events provides information about the distribution of traffic flow across the whole transportation system. The proposed techniques may be applied at any gateway where the flow of human traffic is to be analyzed. For the purpose of associating entry and exit events, a trellis optimization algorithm is used for sequence estimation, based on multiple texel camera measurements. Since the number of states in the trellis exponentially grows with the number of persons currently on the bus, a beam search pruning technique is employed to manage the computational and memory load. Experimental results using real texel camera measurements show 96% matching accuracy for 68 people exiting a bus in a randomized order. In a bus route simulation where a true traffic flow distribution is used to randomly draw entry and exit events for simulated riders, the proposed sequence estimation algorithm produces an estimated traffic flow distribution, which provides an excellent match to the true distribution

    Towards sustainable transport: wireless detection of passenger trips on public transport buses

    Full text link
    An important problem in creating efficient public transport is obtaining data about the set of trips that passengers make, usually referred to as an Origin/Destination (OD) matrix. Obtaining this data is problematic and expensive in general, especially in the case of buses because on-board ticketing systems do not record where and when passengers get off a bus. In this paper we describe a novel and inexpensive system that uses off-the-shelf Bluetooth hardware to accurately record passenger journeys. Here we show how our system can be used to derive passenger OD matrices, and additionally we show how our data can be used to further improve public transport services.Comment: 13 pages, 4 figures, 1 tabl

    iABACUS: A Wi-Fi-Based Automatic Bus Passenger Counting System

    Get PDF
    Since the early stages of the Internet-of-Things (IoT), one of the application scenarios that have been affected the most by this new paradigm is mobility. Smart Cities have greatly benefited from the awareness of some people’s habits to develop efficient mobility services. In particular, knowing how people use public transportation services and move throughout urban infrastructure is crucial in several areas, among which the most prominent are tourism and transportation. Indeed, especially for Public Transportation Companies (PTCs), long- and short-term planning of the transit network requires having a thorough knowledge of the flows of passengers in and out vehicles. Thanks to the ubiquitous presence of Internet connections, this knowledge can be easily enabled by sensors deployed on board of public transport vehicles. In this paper, a Wi-Fi-based Automatic Bus pAssenger CoUnting System, named iABACUS, is presented. The objective of iABACUS is to observe and analyze urban mobility by tracking passengers throughout their journey on public transportation vehicles, without the need for them to take any action. Test results proves that iABACUS efficiently detects the number of devices with an active Wi-Fi interface, with an accuracy of 100% in the static case and almost 94% in the dynamic case. In the latter case, there is a random error that only appears when two bus stops are very close to each other

    Detecting, tracking and counting people getting on/off a metropolitan train using a standard video camera

    Get PDF
    The main source of delays in public transport systems (buses, trams, metros, railways) takes place in their stations. For example, a public transport vehicle can travel at 60 km per hour between stations, but its commercial speed (average en-route speed, including any intermediate delay) does not reach more than half of that value. Therefore, the problem that public transport operators must solve is how to reduce the delay in stations. From the perspective of transport engineering, there are several ways to approach this issue, from the design of infrastructure and vehicles to passenger traffic management. The tools normally available to traffic engineers are analytical models, microscopic traffic simulation, and, ultimately, real-scale laboratory experiments. In any case, the data that are required are number of passengers that get on and off from the vehicles, as well as the number of passengers waiting on platforms. Traditionally, such data has been collected manually by field counts or through videos that are then processed by hand. On the other hand, public transport networks, specially metropolitan railways, have an extensive monitoring infrastructure based on standard video cameras. Traditionally, these are observed manually or with very basic signal processing support, so there is significant scope for improving data capture and for automating the analysis of site usage, safety, and surveillance. This article shows a way of collecting and analyzing the data needed to feed both traffic models and analyze laboratory experimentation, exploiting recent intelligent sensing approaches. The paper presents a new public video dataset gathered using real-scale laboratory recordings. Part of this dataset has been annotated by hand, marking up head locations to provide a ground-truth on which to train and evaluate deep learning detection and tracking algorithms. Tracking outputs are then used to count people getting on and off, achieving a mean accuracy of 92% with less than 0.15% standard deviation on 322 mostly unseen dataset video sequences.Sergio A. Velastin is grateful for funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement N 600371, el Ministerio de Economía, Industria y Competitividad (COFUND2013-51509) el Ministerio de Educación, Cultura y Deporte (CEI-15-17) and Banco Santander. Rodrigo Fernandez and Sergio A. Velastin gratefully acknowledge the Chilean National Science and Technology Council (Conicyt) for its funding under CONICYT-Fondecyt Regular Grant Nos. 1120219, 1080381 and 1140209 (“OBSERVE”)

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    Detection of People Boarding/Alighting a Metropolitan Train using Computer Vision

    Get PDF
    This paper has been presented at : 9th International Conference on Pattern Recognition Systems (ICPRS 2018)Pedestrian detection and tracking have seen a major progress in the last two decades. Nevertheless there are always appli-cation areas which either require further improvement or that have not been sufficiently explored or where production level performance (accuracy and computing efficiency) has not been demonstrated. One such area is that of pedestrian monitoring and counting in metropolitan railways platforms. In this paper we first present a new partly annotated dataset of a full-size laboratory observation of people boarding and alighting from a public transport vehicle. We then present baseline results for automatic detection of such passengers, based on computer vi-sion, that could open the way to compute variables of interest to traffic engineers and vehicle designers such as counts and flows and how they are related to vehicle and platform layout.The authors gratefully acknowledge the Chilean National Science and Technology Council (Conicyt) for its funding under grants CONICYT-Fondecyt Regular nos. 1140209 (“OBSERVE”) , 1120219, and 1080381 . S.A. Velastin is grateful to funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 600371, el Ministerio de Economía y Competitividad (COFUND2013-51509) and Banco Santander. Finally, we are grateful to NVIDIA for its donation as part of its academic GPU Grant Program

    Pedestrian detection and counting in surveillance videos

    Get PDF
    "December 2013.""A Thesis presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Zhihai He.Pedestrian detection and counting have important application in video surveillance for entrance monitoring, customer behavior analysis, and public service management. In this thesis, we propose an accurate, reliable and fast method for pedestrian detection and counting in video surveillance. To this end, we first develop an effective method for background modeling, subtraction, update, and shadow removal. To effectively differentiate person image patches from other background patches, we develop a head-shoulder classification and detection method. A foreground mask curve analysis method is to determine the possible position of persons, and then use a SVM (Support Vector Machine) classifier with HOG (Histogram of Oriented) feature and bag of words to detect the head-shoulder of people. Based on the foreground detection and head-shoulder classification at each frame, we develop a person counting algorithm in the temporal domain to analyze the frame-level classification results. Our experiments with real-world surveillance videos demonstrate the proposed method has achieved accurate and reliable pedestrian detection and counting.Includes bibliographical references (pages 46-54)
    corecore