323 research outputs found

    The State-of-the-Art of Set Visualization

    Get PDF
    Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net

    Designing Fractal Line Pied-de-poules: A Case Study in Algorithmic Design Mediating between Culture and Fractal Mathematics

    Get PDF
    Millions of people own and wear pied-de-poule (houndstooth) garments. The pattern has an intriguing basic figure and a typical set of symmetries. The origin of the pattern lies in a specific type of weaving. In this article I apply computational techniques to modernize this ancient decorative pattern. In particular I describe a way to enrich pied-de-poule with a fractal structure. Although a first fractal line pied-de-poule was shown at Bridges 2015, a number of fundamental questions still remained. The following questions are addressed in this article: Does the original pied-de-poule appear as a limit case when the fractal structure is increasingly refined? Can we prove that the pattern is regular in the sense that one formula describes all patterns? What is special about pied-de-poule when it comes to making these fractals? Can the technique be generalized? The results and techniques in this article anticipate a fashion future in which decorative patterns, including pied-de-poule, will be part of our global culture, as they are now, but rendered in more refined ways and using new technologies. These new technologies include digital manufacturing technologies such as laser-cutting and 3D printing, but also computational and mathematical tools such as Lindenmayer rules (originally devised to describe the algorithmic beauty of plants)

    Orthogonal dissection into few rectangles

    Full text link
    We describe a polynomial time algorithm that takes as input a polygon with axis-parallel sides but irrational vertex coordinates, and outputs a set of as few rectangles as possible into which it can be dissected by axis-parallel cuts and translations. The number of rectangles is the rank of the Dehn invariant of the polygon. The same method can also be used to dissect an axis-parallel polygon into a simple polygon with the minimum possible number of edges. When rotations or reflections are allowed, we can approximate the minimum number of rectangles to within a factor of two.Comment: 18 pages, 8 figures. This version adds results on dissection with rotations and reflection

    Continuum limits of discrete isoperimetric problems and Wulff shapes in lattices and quasicrystal tilings

    Get PDF
    We prove discrete-to-continuum convergence of interaction energies defined on lattices in the Euclidean space (with interactions beyond nearest neighbours) to a crystalline perimeter, and we discuss the possible Wulff shapes obtainable in this way. Exploiting the "multigrid construction" of quasiperiodic tilings (which is an extension of De Bruijn's "pentagrid" construction of Penrose tilings) we adapt the same techniques to also find the macroscopical homogenized perimeter when we microscopically rescale a given quasiperiodic tiling.Comment: 50 pages, 2 figures. Version 2: added references, and some small change

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Heterogeneous Self-Reconfiguring Robotics

    Get PDF
    Self-reconfiguring (SR) robots are modular systems that can autonomously change shape, or reconfigure, for increased versatility and adaptability in unknown environments. In this thesis, we investigate planning and control for systems of non-identical modules, known as heterogeneous SR robots. Although previous approaches rely on module homogeneity as a critical property, we show that the planning complexity of fundamental algorithmic problems in the heterogeneous case is equivalent to that of systems with identical modules. Primarily, we study the problem of how to plan shape changes while considering the placement of specific modules within the structure. We characterize this key challenge in terms of the amount of free space available to the robot and develop a series of decentralized reconfiguration planning algorithms that assume progressively more severe free space constraints and support reconfiguration among obstacles. In addition, we compose our basic planning techniques in different ways to address problems in the related task domains of positioning modules according to function, locomotion among obstacles, self-repair, and recognizing the achievement of distributed goal-states. We also describe the design of a novel simulation environment, implementation results using this simulator, and experimental results in hardware using a planar SR system called the Crystal Robot. These results encourage development of heterogeneous systems. Our algorithms enhance the versatility and adaptability of SR robots by enabling them to use functionally specialized components to match capability, in addition to shape, to the task at hand

    Image-space decomposition algorithms for sort-first parallel volume rendering of unstructured grids

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 96-100.Kutluca, HüseyinM.S

    Low-rank Based Algorithms for Rectification, Repetition Detection and De-noising in Urban Images

    Full text link
    In this thesis, we aim to solve the problem of automatic image rectification and repeated patterns detection on 2D urban images, using novel low-rank based techniques. Repeated patterns (such as windows, tiles, balconies and doors) are prominent and significant features in urban scenes. Detection of the periodic structures is useful in many applications such as photorealistic 3D reconstruction, 2D-to-3D alignment, facade parsing, city modeling, classification, navigation, visualization in 3D map environments, shape completion, cinematography and 3D games. However both of the image rectification and repeated patterns detection problems are challenging due to scene occlusions, varying illumination, pose variation and sensor noise. Therefore, detection of these repeated patterns becomes very important for city scene analysis. Given a 2D image of urban scene, we automatically rectify a facade image and extract facade textures first. Based on the rectified facade texture, we exploit novel algorithms that extract repeated patterns by using Kronecker product based modeling that is based on a solid theoretical foundation. We have tested our algorithms in a large set of images, which includes building facades from Paris, Hong Kong and New York

    Area-contracting maps between rectangles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.Includes bibliographical references (p. 207-208).In this thesis, I worked on estimating the smallest k-dilation of all diffeomorphisms between two n-dimensional rectangles R and S. I proved that for many rectangles there are highly non-linear diffeomorphisms with much smaller k-dilation than any linear diffeomorphism. When k is equal to n-l, I determined the smallest k-dilation up to a constant factor. For all values of k and n, I solved the following related problem up to a constant factor. Given n-dimensional rectangles R and S, decide if there is an embedding of S into R which maps each k-dimensional submanifold of S to an image with larger k-volume. I also applied the k-dilation techniques to two purely topological problems: estimating the Hopf invariant of a map from a 3-manifold to a high-genus surface, and determining whether there is a map of non-zero degree from a 3-manifold to a hyperbolic 3-manifold.by Lawrence Guth.Ph.D
    corecore