19 research outputs found

    Independent sets, matchings, and occupancy fractions

    Get PDF
    We prove tight upper bounds on the logarithmic derivative of the independence and matching polynomials of d-regular graphs. For independent sets, this theorem is a strengthening of Kahn's result that a disjoint union of copies of Kd;d maximizes the number of independent sets of a bipartite d-regular graph, Galvin and Tetali's result that the independence polynomial is maximized by the same, and Zhao's extension of both results to all d-regular graphs. For matchings, this shows that the matching polynomial and the total number of matchings of a d-regular graph are maximized by a union of copies of Kd;d. Using this we prove the asymptotic upper matching conjecture of Friedland, Krop, Lundow, and Markstrom. In probabilistic language, our main theorems state that for all d-regular graphs and all �, the occupancy fraction of the hard-core model and the edge occupancy fraction of the monomer-dimer model with fugacity � are maximized by Kd;d. Our method involves constrained optimization problems over distributions of random variables and applies to all d-regular graphs directly, without a reduction to the bipartite case. Using a variant of the method we prove a lower bound on the occupancy fraction of the hard-core model on any d-regular, vertex-transitive, bipartite graph: the occupancy fraction of such a graph is strictly greater than the occupancy fraction of the unique translationinvariant hard-core measure on the infinite d-regular tre

    Recent results of quantum ergodicity on graphs and further investigation

    Get PDF
    We outline some recent proofs of quantum ergodicity on large graphs and give new applications in the context of irregular graphs. We also discuss some remaining questions.Comment: To appear in "Annales de la facult\'e des Sciences de Toulouse

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore