35,913 research outputs found

    Enumeration of labelled 4-regular planar graphs

    Get PDF
    We present the first combinatorial scheme for counting labelled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function of labelled 4-regular planar graphs can be computed effectively as the solution of a system of equations, from which the coefficients can be extracted. As a byproduct, we also enumerate labelled 3-connected 4-regular planar graphs, and simple 4-regular rooted maps

    Chordal graphs with bounded tree-width

    Get PDF
    Given t≥2t\ge 2 and 0≤k≤t0\le k\le t, we prove that the number of labelled kk-connected chordal graphs with nn vertices and tree-width at most tt is asymptotically cn−5/2γnn!c n^{-5/2} \gamma^n n!, as n→∞n\to\infty, for some constants c,γ>0c,\gamma >0 depending on tt and kk. Additionally, we show that the number of ii-cliques (2≤i≤t2\le i\le t) in a uniform random kk-connected chordal graph with tree-width at most tt is normally distributed as n→∞n\to\infty. The asymptotic enumeration of graphs of tree-width at most tt is wide open for t≥3t\ge 3. To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald [Counting Labelled Chordal Graphs, \textit{Graphs and Combinatorics} (1985)], were an algorithm is developed to obtain the exact number of labelled chordal graphs on nn vertices.Peer ReviewedPostprint (author's final draft

    A Complete Grammar for Decomposing a Family of Graphs into 3-connected Components

    Full text link
    Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family of graphs (with some stability conditions) in terms of the 3-connected subfamily. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar. As a main application we recover in a purely combinatorial way the analytic expression found by Gim\'enez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter.Comment: 39 page

    Enumeration of labelled 4-regular planar graphs II: asymptotics

    Get PDF
    This work is a follow-up of the article (Noy et al., 2019), where the authors solved the problem of counting labelled 4-regular planar graphs. In this paper, we obtain a precise asymptotic estimate for the number of labelled 4-regular planar graphs on vertices. Our estimate is of the form , where is a constant and is the radius of convergence of the generating function , and conforms to the universal pattern obtained previously in the enumeration of several classes of planar graphs. In addition to analytic methods, our solution needs intensive use of computer algebra in order to deal with large systems of multivariate polynomial equations. We also obtain asymptotic estimates for the number of 2- and 3-connected 4-regular planar graphs, and for the number of 4-regular simple maps, both connected and 2-connected.Peer ReviewedPostprint (author's final draft

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g−1)/2−1γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ≈27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability

    The parameterised complexity of counting connected subgraphs and graph motifs

    Get PDF
    We introduce a family of parameterised counting problems on graphs, p-#Induced Subgraph With Property(Φ), which generalises a number of problems which have previously been studied. This paper focuses on the case in which Φ defines a family of graphs whose edge-minimal elements all have bounded treewidth; this includes the special case in which Φ describes the property of being connected. We show that exactly counting the number of connected induced k-vertex subgraphs in an n-vertex graph is #W[1]-hard, but on the other hand there exists an FPTRAS for the problem; more generally, we show that there exists an FPTRAS for p-#Induced Subgraph With Property(Φ) whenever Φ is monotone and all the minimal graphs satisfying Φ have bounded treewidth. We then apply these results to a counting version of the Graph Motif problem

    Characterization and enumeration of toroidal K_{3,3}-subdivision-free graphs

    Get PDF
    We describe the structure of 2-connected non-planar toroidal graphs with no K_{3,3}-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K_5-subdivision in [A. Gagarin and W. Kocay, "Embedding graphs containing K_5-subdivisions'', Ars Combin. 64 (2002), 33-49]. It allows to recognize these graphs in linear-time and makes possible to enumerate labelled 2-connected toroidal graphs containing no K_{3,3}-subdivisions and having minimum vertex degree two or three by using an approach similar to [A. Gagarin, G. Labelle, and P. Leroux, "Counting labelled projective-planar graphs without a K_{3,3}-subdivision", submitted, arXiv:math.CO/0406140, (2004)].Comment: 18 pages, 7 figures and 4 table

    On the refined counting of graphs on surfaces

    Full text link
    Ribbon graphs embedded on a Riemann surface provide a useful way to describe the double line Feynman diagrams of large N computations and a variety of other QFT correlator and scattering amplitude calculations, e.g in MHV rules for scattering amplitudes, as well as in ordinary QED. Their counting is a special case of the counting of bi-partite embedded graphs. We review and extend relevant mathematical literature and present results on the counting of some infinite classes of bi-partite graphs. Permutation groups and representations as well as double cosets and quotients of graphs are useful mathematical tools. The counting results are refined according to data of physical relevance, such as the structure of the vertices, faces and genus of the embedded graph. These counting problems can be expressed in terms of observables in three-dimensional topological field theory with S_d gauge group which gives them a topological membrane interpretation.Comment: 57 pages, 12 figures; v2: Typos corrected; references adde
    • …
    corecore