668 research outputs found

    Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

    Get PDF
    We give a fully polynomial-time approximation scheme (FPTAS) to count the number of independent sets on almost every Delta-regular bipartite graph if Delta >= 53. In the weighted case, for all sufficiently large integers Delta and weight parameters lambda = Omega~ (1/(Delta)), we also obtain an FPTAS on almost every Delta-regular bipartite graph. Our technique is based on the recent work of Jenssen, Keevash and Perkins (SODA, 2019) and we also apply it to confirm an open question raised there: For all q >= 3 and sufficiently large integers Delta=Delta(q), there is an FPTAS to count the number of q-colorings on almost every Delta-regular bipartite graph

    Sidorenko's conjecture, colorings and independent sets

    Get PDF
    Let hom(H,G)\hom(H,G) denote the number of homomorphisms from a graph HH to a graph GG. Sidorenko's conjecture asserts that for any bipartite graph HH, and a graph GG we have hom(H,G)v(G)v(H)(hom(K2,G)v(G)2)e(H),\hom(H,G)\geq v(G)^{v(H)}\left(\frac{\hom(K_2,G)}{v(G)^2}\right)^{e(H)}, where v(H),v(G)v(H),v(G) and e(H),e(G)e(H),e(G) denote the number of vertices and edges of the graph HH and GG, respectively. In this paper we prove Sidorenko's conjecture for certain special graphs GG: for the complete graph KqK_q on qq vertices, for a K2K_2 with a loop added at one of the end vertices, and for a path on 33 vertices with a loop added at each vertex. These cases correspond to counting colorings, independent sets and Widom-Rowlinson colorings of a graph HH. For instance, for a bipartite graph HH the number of qq-colorings ch(H,q)\textrm{ch}(H,q) satisfies ch(H,q)qv(H)(q1q)e(H).\textrm{ch}(H,q)\geq q^{v(H)}\left(\frac{q-1}{q}\right)^{e(H)}. In fact, we will prove that in the last two cases (independent sets and Widom-Rowlinson colorings) the graph HH does not need to be bipartite. In all cases, we first prove a certain correlation inequality which implies Sidorenko's conjecture in a stronger form.Comment: Two references added and Remark 2.1 is expande

    Counting dominating sets and related structures in graphs

    Full text link
    We consider some problems concerning the maximum number of (strong) dominating sets in a regular graph, and their weighted analogues. Our primary tool is Shearer's entropy lemma. These techniques extend to a reasonably broad class of graph parameters enumerating vertex colorings satisfying conditions on the multiset of colors appearing in (closed) neighborhoods. We also generalize further to enumeration problems for what we call existence homomorphisms. Here our results are substantially less complete, though we do solve some natural problems

    Fast Algorithms at Low Temperatures via Markov Chains

    Get PDF
    For spin systems, such as the hard-core model on independent sets weighted by fugacity lambda>0, efficient algorithms for the associated approximate counting/sampling problems typically apply in the high-temperature region, corresponding to low fugacity. Recent work of Jenssen, Keevash and Perkins (2019) yields an FPTAS for approximating the partition function (and an efficient sampling algorithm) on bounded-degree (bipartite) expander graphs for the hard-core model at sufficiently high fugacity, and also the ferromagnetic Potts model at sufficiently low temperatures. Their method is based on using the cluster expansion to obtain a complex zero-free region for the partition function of a polymer model, and then approximating this partition function using the polynomial interpolation method of Barvinok. We present a simple discrete-time Markov chain for abstract polymer models, and present an elementary proof of rapid mixing of this new chain under sufficient decay of the polymer weights. Applying these general polymer results to the hard-core and ferromagnetic Potts models on bounded-degree (bipartite) expander graphs yields fast algorithms with running time O(n log n) for the Potts model and O(n^2 log n) for the hard-core model, in contrast to typical running times of n^{O(log Delta)} for algorithms based on Barvinok\u27s polynomial interpolation method on graphs of maximum degree Delta. In addition, our approach via our polymer model Markov chain is conceptually simpler as it circumvents the zero-free analysis and the generalization to complex parameters. Finally, we combine our results for the hard-core and ferromagnetic Potts models with standard Markov chain comparison tools to obtain polynomial mixing time for the usual spin system Glauber dynamics restricted to even and odd or "red" dominant portions of the respective state spaces

    A reverse Sidorenko inequality

    Full text link
    Let HH be a graph allowing loops as well as vertex and edge weights. We prove that, for every triangle-free graph GG without isolated vertices, the weighted number of graph homomorphisms hom(G,H)\hom(G, H) satisfies the inequality hom(G,H)uvE(G)hom(Kdu,dv,H)1/(dudv), \hom(G, H ) \le \prod_{uv \in E(G)} \hom(K_{d_u,d_v}, H )^{1/(d_ud_v)}, where dud_u denotes the degree of vertex uu in GG. In particular, one has hom(G,H)1/E(G)hom(Kd,d,H)1/d2 \hom(G, H )^{1/|E(G)|} \le \hom(K_{d,d}, H )^{1/d^2} for every dd-regular triangle-free GG. The triangle-free hypothesis on GG is best possible. More generally, we prove a graphical Brascamp-Lieb type inequality, where every edge of GG is assigned some two-variable function. These inequalities imply tight upper bounds on the partition function of various statistical models such as the Ising and Potts models, which includes independent sets and graph colorings. For graph colorings, corresponding to H=KqH = K_q, we show that the triangle-free hypothesis on GG may be dropped; this is also valid if some of the vertices of KqK_q are looped. A corollary is that among dd-regular graphs, G=Kd,dG = K_{d,d} maximizes the quantity cq(G)1/V(G)c_q(G)^{1/|V(G)|} for every qq and dd, where cq(G)c_q(G) counts proper qq-colorings of GG. Finally, we show that if the edge-weight matrix of HH is positive semidefinite, then hom(G,H)vV(G)hom(Kdv+1,H)1/(dv+1). \hom(G, H) \le \prod_{v \in V(G)} \hom(K_{d_v+1}, H )^{1/(d_v+1)}. This implies that among dd-regular graphs, G=Kd+1G = K_{d+1} maximizes hom(G,H)1/V(G)\hom(G, H)^{1/|V(G)|}. For 2-spin Ising models, our results give a complete characterization of extremal graphs: complete bipartite graphs maximize the partition function of 2-spin antiferromagnetic models and cliques maximize the partition function of ferromagnetic models. These results settle a number of conjectures by Galvin-Tetali, Galvin, and Cohen-Csikv\'ari-Perkins-Tetali, and provide an alternate proof to a conjecture by Kahn.Comment: 30 page

    The Bipartite Swapping Trick on Graph Homomorphisms

    Full text link
    We provide an upper bound to the number of graph homomorphisms from GG to HH, where HH is a fixed graph with certain properties, and GG varies over all NN-vertex, dd-regular graphs. This result generalizes a recently resolved conjecture of Alon and Kahn on the number of independent sets. We build on the work of Galvin and Tetali, who studied the number of graph homomorphisms from GG to HH when HH is bipartite. We also apply our techniques to graph colorings and stable set polytopes.Comment: 22 pages. To appear in SIAM J. Discrete Mat

    Extremes of the internal energy of the Potts model on cubic graphs

    Get PDF
    We prove tight upper and lower bounds on the internal energy per particle (expected number of monochromatic edges per vertex) in the anti-ferromagnetic Potts model on cubic graphs at every temperature and for all q2q \ge 2. This immediately implies corresponding tight bounds on the anti-ferromagnetic Potts partition function. Taking the zero-temperature limit gives new results in extremal combinatorics: the number of qq-colorings of a 33-regular graph, for any q2q \ge 2, is maximized by a union of K3,3K_{3,3}'s. This proves the d=3d=3 case of a conjecture of Galvin and Tetali

    Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

    Full text link
    Recent results establish for 2-spin antiferromagnetic systems that the computational complexity of approximating the partition function on graphs of maximum degree D undergoes a phase transition that coincides with the uniqueness phase transition on the infinite D-regular tree. For the ferromagnetic Potts model we investigate whether analogous hardness results hold. Goldberg and Jerrum showed that approximating the partition function of the ferromagnetic Potts model is at least as hard as approximating the number of independent sets in bipartite graphs (#BIS-hardness). We improve this hardness result by establishing it for bipartite graphs of maximum degree D. We first present a detailed picture for the phase diagram for the infinite D-regular tree, giving a refined picture of its first-order phase transition and establishing the critical temperature for the coexistence of the disordered and ordered phases. We then prove for all temperatures below this critical temperature that it is #BIS-hard to approximate the partition function on bipartite graphs of maximum degree D. As a corollary, it is #BIS-hard to approximate the number of k-colorings on bipartite graphs of maximum degree D when k <= D/(2 ln D). The #BIS-hardness result for the ferromagnetic Potts model uses random bipartite regular graphs as a gadget in the reduction. The analysis of these random graphs relies on recent connections between the maxima of the expectation of their partition function, attractive fixpoints of the associated tree recursions, and induced matrix norms. We extend these connections to random regular graphs for all ferromagnetic models and establish the Bethe prediction for every ferromagnetic spin system on random regular graphs. We also prove for the ferromagnetic Potts model that the Swendsen-Wang algorithm is torpidly mixing on random D-regular graphs at the critical temperature for large q.Comment: To appear in SIAM J. Computin
    corecore