13,431 research outputs found

    Counting dominating sets and related structures in graphs

    Full text link
    We consider some problems concerning the maximum number of (strong) dominating sets in a regular graph, and their weighted analogues. Our primary tool is Shearer's entropy lemma. These techniques extend to a reasonably broad class of graph parameters enumerating vertex colorings satisfying conditions on the multiset of colors appearing in (closed) neighborhoods. We also generalize further to enumeration problems for what we call existence homomorphisms. Here our results are substantially less complete, though we do solve some natural problems

    Gamma-Set Domination Graphs. I: Complete Biorientations of \u3cem\u3eq-\u3c/em\u3eExtended Stars and Wounded Spider Graphs

    Get PDF
    The domination number of a graph G, γ(G), and the domination graph of a digraph D, dom(D) are integrated in this paper. The γ-set domination graph of the complete biorientation of a graph G, domγ(G) is created. All γ-sets of specific trees T are found, and dom-γ(T) is characterized for those classes

    Dominating sets in projective planes

    Get PDF
    We describe small dominating sets of the incidence graphs of finite projective planes by establishing a stability result which shows that dominating sets are strongly related to blocking and covering sets. Our main result states that if a dominating set in a projective plane of order q>81q>81 is smaller than 2q+2[q]+22q+2[\sqrt{q}]+2 (i.e., twice the size of a Baer subplane), then it contains either all but possibly one points of a line or all but possibly one lines through a point. Furthermore, we completely characterize dominating sets of size at most 2q+q+12q+\sqrt{q}+1. In Desarguesian planes, we could rely on strong stability results on blocking sets to show that if a dominating set is sufficiently smaller than 3q, then it consists of the union of a blocking set and a covering set apart from a few points and lines.Comment: 19 page

    Reconfiguration on sparse graphs

    Full text link
    A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions S and T of size k, whether it is possible to transform S into T by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k. We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set and Dominating Set. We denote the former by ISR and the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that ISR is fixed-parameter tractable parameterized by k when the input graph is of bounded degeneracy or nowhere-dense. As a corollary, we answer positively an open question concerning the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques generalize recent results showing that ISR is fixed-parameter tractable on planar graphs and graphs of bounded degree. For DSR, we show the problem fixed-parameter tractable parameterized by k when the input graph does not contain large bicliques, a class of graphs which includes graphs of bounded degeneracy and nowhere-dense graphs

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299

    On the number of k-dominating independent sets

    Get PDF
    We study the existence and the number of kk-dominating independent sets in certain graph families. While the case k=1k=1 namely the case of maximal independent sets - which is originated from Erd\H{o}s and Moser - is widely investigated, much less is known in general. In this paper we settle the question for trees and prove that the maximum number of kk-dominating independent sets in nn-vertex graphs is between ck22knc_k\cdot\sqrt[2k]{2}^n and ck2k+1nc_k'\cdot\sqrt[k+1]{2}^n if k2k\geq 2, moreover the maximum number of 22-dominating independent sets in nn-vertex graphs is between c1.22nc\cdot 1.22^n and c1.246nc'\cdot1.246^n. Graph constructions containing a large number of kk-dominating independent sets are coming from product graphs, complete bipartite graphs and with finite geometries. The product graph construction is associated with the number of certain MDS codes.Comment: 13 page
    corecore