3,408 research outputs found

    A weighted cellular matrix-tree theorem, with applications to complete colorful and cubical complexes

    Get PDF
    We present a version of the weighted cellular matrix-tree theorem that is suitable for calculating explicit generating functions for spanning trees of highly structured families of simplicial and cell complexes. We apply the result to give weighted generalizations of the tree enumeration formulas of Adin for complete colorful complexes, and of Duval, Klivans and Martin for skeleta of hypercubes. We investigate the latter further via a logarithmic generating function for weighted tree enumeration, and derive another tree-counting formula using the unsigned Euler characteristics of skeleta of a hypercube and the Crapo β\beta-invariant of uniform matroids.Comment: 22 pages, 2 figures. Sections 6 and 7 of previous version simplified and condensed. Final version to appear in J. Combin. Theory Ser.

    Cellular spanning trees and Laplacians of cubical complexes

    Get PDF
    We prove a Matrix-Tree Theorem enumerating the spanning trees of a cell complex in terms of the eigenvalues of its cellular Laplacian operators, generalizing a previous result for simplicial complexes. As an application, we obtain explicit formulas for spanning tree enumerators and Laplacian eigenvalues of cubes; the latter are integers. We prove a weighted version of the eigenvalue formula, providing evidence for a conjecture on weighted enumeration of cubical spanning trees. We introduce a cubical analogue of shiftedness, and obtain a recursive formula for the Laplacian eigenvalues of shifted cubical complexes, in particular, these eigenvalues are also integers. Finally, we recover Adin's enumeration of spanning trees of a complete colorful simplicial complex from the cellular Matrix-Tree Theorem together with a result of Kook, Reiner and Stanton.Comment: 24 pages, revised version, to appear in Advances in Applied Mathematic

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Simplicial matrix-tree theorems

    Get PDF
    We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes Δ\Delta, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Laplacian matrix of Δ\Delta. As in the graphic case, one can obtain a more finely weighted generating function for simplicial spanning trees by assigning an indeterminate to each vertex of Δ\Delta and replacing the entries of the Laplacian with Laurent monomials. When Δ\Delta is a shifted complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and prove that they determine its set of faces uniquely, generalizing known results about threshold graphs and unweighted Laplacian eigenvalues of shifted complexes.Comment: 36 pages, 2 figures. Final version, to appear in Trans. Amer. Math. So

    Melonic phase transition in group field theory

    Full text link
    Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of four dimensional models of quantum gravity.Comment: 8 pages, 4 figures; to appear in Letters in Mathematical Physic

    Weighted Tree-Numbers of Matroid Complexes

    Get PDF
    International audienceWe give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes consist of polynomials in the weights. In the formula, Crapo’s β\beta-invariant appears as the key factor relating weighted combinatorial Laplacians and weighted tree-numbers for matroid complexes.Nous présentons une nouvelle formule pour les nombres d’arbres pondérés de grande dimension des matroïdes complexes. Cette formule est dérivée du résultat que le spectre des Laplaciens combinatoires pondérés des matrides complexes sont des polynômes à plusieurs variables. Dans la formule, le β\beta;-invariant de Crapo apparaît comme étant le facteur clé reliant les Laplaciens combinatoires pondérés et les nombres d’arbres pondérés des matroïdes complexes

    A weighted cellular matrix-tree theorem, with applications to complete colorful and cubical complexes

    Get PDF
    We present a version of the weighted cellular matrix-tree theorem that is suitable for calculating explicit generating functions for spanning trees of highly structured families of simplicial and cell complexes. We apply the result to give weighted generalizations of the tree enumeration formulas of Adin for complete colorful complexes, and of Duval, Klivans and Martin for skeleta of hypercubes. We investigate the latter further via a logarithmic generating function for weighted tree enumeration, and derive another tree-counting formula using the unsigned Euler characteristics of skeleta of a hypercube

    Cyclotomic and simplicial matroids

    Get PDF
    Two naturally occurring matroids representable over Q are shown to be dual: the {\it cyclotomic matroid} μn\mu_n represented by the nthn^{th} roots of unity 1,ζ,ζ2,...,ζn−11,\zeta,\zeta^2,...,\zeta^{n-1} inside the cyclotomic extension Q(ζ)Q(\zeta), and a direct sum of copies of a certain simplicial matroid, considered originally by Bolker in the context of transportation polytopes. A result of Adin leads to an upper bound for the number of QQ-bases for Q(ζ)Q(\zeta) among the nthn^{th} roots of unity, which is tight if and only if nn has at most two odd prime factors. In addition, we study the Tutte polynomial of μn\mu_n in the case that nn has two prime factors.Comment: 9 pages, 1 figur
    • …
    corecore