236 research outputs found

    A faster tree-decomposition based algorithm for counting linear extensions

    Get PDF
    We consider the problem of counting the linear extensions of an n-element poset whose cover graph has treewidth at most t. We show that the problem can be solved in time Õ(nt+3), where Õ suppresses logarithmic factors. Our algorithm is based on fast multiplication of multivariate polynomials, and so differs radically from a previous Õ(nt+4)-time inclusion–exclusion algorithm. We also investigate the algorithm from a practical point of view. We observe that the running time is not well characterized by the parameters n and t alone, fixing of which leaves large variance in running times due to uncontrolled features of the selected optimal-width tree decomposition. For selecting an efficient tree decomposition we adopt the method of empirical hardness models, and show that it typically enables picking a tree decomposition that is significantly more efficient than a random optimal-width tree decomposition. © Kustaa Kangas, Mikko Koivisto, and Sami Salonen; licensed under Creative Commons License CC-BY.Peer reviewe

    Lower Bounds for Real Solutions to Sparse Polynomial Systems

    Get PDF
    We show how to construct sparse polynomial systems that have non-trivial lower bounds on their numbers of real solutions. These are unmixed systems associated to certain polytopes. For the order polytope of a poset P this lower bound is the sign-imbalance of P and it holds if all maximal chains of P have length of the same parity. This theory also gives lower bounds in the real Schubert calculus through sagbi degeneration of the Grassmannian to a toric variety, and thus recovers a result of Eremenko and Gabrielov.Comment: 31 pages. Minor revision

    Counting Linear Extensions in Practice : MCMC versus Exponential Monte Carlo

    Get PDF
    Counting the linear extensions of a given partial order is a #P-complete problem that arises in numerous applications. For polynomial-time approximation, several Markov chain Monte Carlo schemes have been proposed; however, little is known of their efficiency in practice. This work presents an empirical evaluation of the state-of-the-art schemes and investigates a number of ideas to enhance their performance. In addition, we introduce a novel approximation scheme, adaptive relaxation Monte Carlo (ARMC), that leverages exact exponential-time counting algorithms. We show that approximate counting is feasible up to a few hundred elements on various classes of partial orders, and within this range ARMC typically outperforms the other schemes.Peer reviewe

    Computational complexity of counting coincidences

    Full text link
    Can you decide if there is a coincidence in the numbers counting two different combinatorial objects? For example, can you decide if two regions in R3\mathbb{R}^3 have the same number of domino tilings? There are two versions of the problem, with 2×1×12\times 1 \times 1 and 2×2×12\times 2 \times 1 boxes. We prove that in both cases the coincidence problem is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. While the conclusions are the same, the proofs are notably different and generalize in different directions. We proceed to explore the coincidence problem for counting independent sets and matchings in graphs, matroid bases, order ideals and linear extensions in posets, permutation patterns, and the Kronecker coefficients. We also make a number of conjectures for counting other combinatorial objects such as plane triangulations, contingency tables, standard Young tableaux, reduced factorizations and the Littlewood--Richardson coefficients.Comment: 23 pages, 6 figure
    • …
    corecore