226 research outputs found

    Counting independent sets in graphs with bounded bipartite pathwidth

    Get PDF
    The Glauber dynamics can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair’s work on approximately counting matchings. The class of graphs with bounded bipartite path-width includes line graphs and claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth

    A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

    Get PDF
    For even kk, the matchings connectivity matrix Mk\mathbf{M}_k encodes which pairs of perfect matchings on kk vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of Mk\mathbf{M}_k over Z2\mathbb{Z}_2 is Θ(2k)\Theta(\sqrt 2^k) and used this to give an O∗((2+2)pw)O^*((2+\sqrt{2})^{\mathsf{pw}}) time algorithm for counting Hamiltonian cycles modulo 22 on graphs of pathwidth pw\mathsf{pw}. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix within Mk\mathbf{M}_k, which enabled a "pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et al. (SODA 2011). We present a new technique for a similar pattern propagation when only a black-box lower bound on the asymptotic rank of Mk\mathbf{M}_k is given; no stronger structural insights such as the existence of large permutation submatrices in Mk\mathbf{M}_k are needed. Given appropriate rank bounds, our technique yields lower bounds for counting Hamiltonian cycles (also modulo fixed primes pp) parameterized by pathwidth. To apply this technique, we prove that the rank of Mk\mathbf{M}_k over the rationals is 4k/poly(k)4^k / \mathrm{poly}(k). We also show that the rank of Mk\mathbf{M}_k over Zp\mathbb{Z}_p is Ω(1.97k)\Omega(1.97^k) for any prime p≠2p\neq 2 and even Ω(2.15k)\Omega(2.15^k) for some primes. As a consequence, we obtain that Hamiltonian cycles cannot be counted in time O∗((6−ϵ)pw)O^*((6-\epsilon)^{\mathsf{pw}}) for any ϵ>0\epsilon>0 unless SETH fails. This bound is tight due to a O∗(6pw)O^*(6^{\mathsf{pw}}) time algorithm by Bodlaender et al. (ICALP 2013). Under SETH, we also obtain that Hamiltonian cycles cannot be counted modulo primes p≠2p\neq 2 in time O∗(3.97pw)O^*(3.97^\mathsf{pw}), indicating that the modulus can affect the complexity in intricate ways.Comment: improved lower bounds modulo primes, improved figures, to appear in SODA 201

    Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2

    Full text link
    Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2

    Reconfiguration in bounded bandwidth and treedepth

    Full text link
    We show that several reconfiguration problems known to be PSPACE-complete remain so even when limited to graphs of bounded bandwidth. The essential step is noticing the similarity to very limited string rewriting systems, whose ability to directly simulate Turing Machines is classically known. This resolves a question posed open in [Bonsma P., 2012]. On the other hand, we show that a large class of reconfiguration problems becomes tractable on graphs of bounded treedepth, and that this result is in some sense tight.Comment: 14 page

    Current Algorithms for Detecting Subgraphs of Bounded Treewidth Are Probably Optimal

    Get PDF
    The Subgraph Isomorphism problem is of considerable importance in computer science. We examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of applications. This problem has a well-known algorithm via color-coding that runs in time O(n^{tw(H)+1}) [Alon, Yuster, Zwick\u2795], where n is the number of vertices of the host graph G. While there are pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time of O(n^{tw(H)+1-?}) or even faster (e.g. for k-cliques), it is not known whether such improvements are possible for all patterns. The only known lower bound rules out time n^{o(tw(H) / log(tw(H)))} for any class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx\u2707]. In this paper, we demonstrate the existence of maximally hard pattern graphs H that require time n^{tw(H)+1-o(1)}. Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard assumption from fine-grained complexity theory, we prove the following asymptotic statement for large treewidth t: For any ? > 0 there exists t ? 3 and a pattern graph H of treewidth t such that Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-?}). Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for each specific treewidth t ? 3: For any t ? 3 there exists a pattern graph H of treewidth t such that for any ? > 0 Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-?}). In addition to these main results, we explore (1) colored and uncolored problem variants (and why they are equivalent for most cases), (2) Subgraph Isomorphism for tw < 3, (3) Subgraph Isomorphism parameterized by pathwidth instead of treewidth, and (4) a weighted variant that we call Exact Weight Subgraph Isomorphism, for which we examine pseudo-polynomial time algorithms. For many of these settings we obtain similarly tight upper and lower bounds

    Structurally Parameterized d-Scattered Set

    Full text link
    In dd-Scattered Set we are given an (edge-weighted) graph and are asked to select at least kk vertices, so that the distance between any pair is at least dd, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of this problem with respect to various standard graph parameters. In particular, we show the following: - For any d≥2d\ge2, an O∗(dtw)O^*(d^{\textrm{tw}})-time algorithm, where tw\textrm{tw} is the treewidth of the input graph. - A tight SETH-based lower bound matching this algorithm's performance. These generalize known results for Independent Set. - dd-Scattered Set is W[1]-hard parameterized by vertex cover (for edge-weighted graphs), or feedback vertex set (for unweighted graphs), even if kk is an additional parameter. - A single-exponential algorithm parameterized by vertex cover for unweighted graphs, complementing the above-mentioned hardness. - A 2O(td2)2^{O(\textrm{td}^2)}-time algorithm parameterized by tree-depth (td\textrm{td}), as well as a matching ETH-based lower bound, both for unweighted graphs. We complement these mostly negative results by providing an FPT approximation scheme parameterized by treewidth. In particular, we give an algorithm which, for any error parameter ϵ>0\epsilon > 0, runs in time O∗((tw/ϵ)O(tw))O^*((\textrm{tw}/\epsilon)^{O(\textrm{tw})}) and returns a d/(1+ϵ)d/(1+\epsilon)-scattered set of size kk, if a dd-scattered set of the same size exists

    On the Parameterised Complexity of Induced Multipartite Graph Parameters

    Full text link
    We introduce a family of graph parameters, called induced multipartite graph parameters, and study their computational complexity. First, we consider the following decision problem: an instance is an induced multipartite graph parameter pp and a given graph GG, and for natural numbers k≥2k\geq2 and ℓ\ell, we must decide whether the maximum value of pp over all induced kk-partite subgraphs of GG is at most ℓ\ell. We prove that this problem is W[1]-hard. Next, we consider a variant of this problem, where we must decide whether the given graph GG contains a sufficiently large induced kk-partite subgraph HH such that p(H)≤ℓp(H)\leq\ell. We show that for certain parameters this problem is para-NP-hard, while for others it is fixed-parameter tractable.Comment: 9 pages, 0 figure
    • …
    corecore