119 research outputs found

    Transitive and Gallai colorings

    Full text link
    A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle. This concept first appeared in the study of comparability graphs and anti-Ramsey theory. We introduce a transitive analogue for acyclic directed graphs, and generalize both notions to Coxeter systems, matroids and commutative algebras. It is shown that for any finite matroid (or oriented matroid), the maximal number of colors is equal to the matroid rank. This generalizes a result of Erd\H{o}s-Simonovits-S\'os for complete graphs. The number of Gallai (or transitive) colorings of the matroid that use at most kk colors is a polynomial in kk. Also, for any acyclic oriented matroid, represented over the real numbers, the number of transitive colorings using at most 2 colors is equal to the number of chambers in the dual hyperplane arrangement. We count Gallai and transitive colorings of the root system of type A using the maximal number of colors, and show that, when equipped with a natural descent set map, the resulting quasisymmetric function is symmetric and Schur-positive.Comment: 31 pages, 5 figure

    Matroid basis graphs. I

    Get PDF
    AbstractA matroid may be defined as a collection of sets, called bases, which satisfy a certain exchange axiom. The basis graph of a matroid has a vertex for each basis and an edge for each pair of bases that differ by the exchange of a single pair of elements. Two characterizations of basis graphs are obtained. The first involves certain local subgraphs and how they lie when the given graph is leveled with respect to distance from a particular vertex. The second involves the existence of a special mapping from the given graph to some “full” basis graph. It is also shown that in a natural sense all basis graphs are homotopically trivial

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende
    corecore