15,885 research outputs found

    Counting CTL

    Get PDF
    The original publication is available at www.springerlink.com.International audienceThis paper presents a range of quantitative extensions for the temporal logic CTL. We enhance temporal modalities with the ability to constrain the number of states satisfying certain sub-formulas along paths. By selecting the combinations of Boolean and arithmetic operations allowed in constraints, one obtains several distinct logics generalizing CTL. We provide a thorough analysis of their expressiveness and of the complexity of their model-checking problem (ranging from P-complete to undecidable)

    ?-Forest Algebras and Temporal Logics

    Get PDF
    We use the algebraic framework for languages of infinite trees introduced in [A. Blumensath, 2020] to derive effective characterisations of various temporal logics, in particular the logic EF (a fragment of CTL) and its counting variant cEF

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    IEEE Standard 1500 Compliance Verification for Embedded Cores

    Get PDF
    Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar

    Automating the IEEE std. 1500 compliance verification for embedded cores

    Get PDF
    The IEEE 1500 standard for embedded core testing proposes a very effective solution for testing modern system-on-chip (SoC). It proposes a flexible hardware test wrapper architecture, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Already several IP providers have announced compliance in both existing and future design blocks. In this paper we address the challenge of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE std. 1500. This is a mandatory step to fully trust the wrapper functionalities in applying the test sequences to the core. The proposed solution aims at implementing a verification framework allowing core providers and/or integrators to automatically verify the compliancy of their products (sold or purchased) to the standar

    Enriched MU-Calculi Module Checking

    Full text link
    The model checking problem for open systems has been intensively studied in the literature, for both finite-state (module checking) and infinite-state (pushdown module checking) systems, with respect to Ctl and Ctl*. In this paper, we further investigate this problem with respect to the \mu-calculus enriched with nominals and graded modalities (hybrid graded Mu-calculus), in both the finite-state and infinite-state settings. Using an automata-theoretic approach, we show that hybrid graded \mu-calculus module checking is solvable in exponential time, while hybrid graded \mu-calculus pushdown module checking is solvable in double-exponential time. These results are also tight since they match the known lower bounds for Ctl. We also investigate the module checking problem with respect to the hybrid graded \mu-calculus enriched with inverse programs (Fully enriched \mu-calculus): by showing a reduction from the domino problem, we show its undecidability. We conclude with a short overview of the model checking problem for the Fully enriched Mu-calculus and the fragments obtained by dropping at least one of the additional constructs

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations—restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that in most applications, approaching CTL model checking by parallelism will not result in the desired speed up. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL +, and ECTL +
    • 

    corecore