2,044 research outputs found

    Boolean Functions and Permanents of Sylvester Hadamard Matrices

    Get PDF
    One of the fastest known general techniques for computing permanents is Ryser’s formula. On this note, we show that this formula over Sylvester Hadamard matrices of order 2m, Hm, can be carried out by enumerating m-variable Boolean functions with an arbitrary Walsh spectrum. As a consequence, the quotient per(Hm)/22m might be a measure of the “density” of m-variable Boolean functions with high nonlinearity

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Asymptotic enumeration of correlation-immune boolean functions

    Get PDF
    A boolean function of nn boolean variables is {correlation-immune} of order kk if the function value is uncorrelated with the values of any kk of the arguments. Such functions are of considerable interest due to their cryptographic properties, and are also related to the orthogonal arrays of statistics and the balanced hypercube colourings of combinatorics. The {weight} of a boolean function is the number of argument values that produce a function value of 1. If this is exactly half the argument values, that is, 2n12^{n-1} values, a correlation-immune function is called {resilient}. An asymptotic estimate of the number N(n,k)N(n,k) of nn-variable correlation-immune boolean functions of order kk was obtained in 1992 by Denisov for constant kk. Denisov repudiated that estimate in 2000, but we will show that the repudiation was a mistake. The main contribution of this paper is an asymptotic estimate of N(n,k)N(n,k) which holds if kk increases with nn within generous limits and specialises to functions with a given weight, including the resilient functions. In the case of k=1k=1, our estimates are valid for all weights.Comment: 18 page

    Matrix methods in combinational logic design.

    Get PDF

    Implementing Symmetric Cryptography Using Sequence of Semi-Bent Functions

    Get PDF
    Symmetric cryptography is a cornerstone of everyday digital security, where two parties must share a common key to communicate. The most common primitives in symmetric cryptography are stream ciphers and block ciphers that guarantee confidentiality of communications and hash functions for integrity. Thus, for securing our everyday life communication, it is necessary to be convinced by the security level provided by all the symmetric-key cryptographic primitives. The most important part of a stream cipher is the key stream generator, which provides the overall security for stream ciphers. Nonlinear Boolean functions were preferred for a long time to construct the key stream generator. In order to resist several known attacks, many requirements have been proposed on the Boolean functions. Attacks against the cryptosystems have forced deep research on Boolean function to allow us a more secure encryption. In this work we describe all main requirements for constructing of cryptographically significant Boolean functions. Moreover, we provide a construction of Boolean functions (semi-bent Boolean functions) which can be used in the construction of orthogonal variable spreading factor codes used in code division multiple access (CDMA) systems as well as in certain cryptographic applications

    Balanced crossover operators in Genetic Algorithms

    Get PDF
    In several combinatorial optimization problems arising in cryptography and design theory, the admissible solutions must often satisfy a balancedness constraint, such as being represented by bitstrings with a fixed number of ones. For this reason, several works in the literature tackling these optimization problems with Genetic Algorithms (GA) introduced new balanced crossover operators which ensure that the offspring has the same balancedness characteristics of the parents. However, the use of such operators has never been thoroughly motivated, except for some generic considerations about search space reduction. In this paper, we undertake a rigorous statistical investigation on the effect of balanced and unbalanced crossover operators against three optimization problems from the area of cryptography and coding theory: nonlinear balanced Boolean functions, binary Orthogonal Arrays (OA) and bent functions. In particular, we consider three different balanced crossover operators (each with two variants: \u201cleft-to-right\u201d and \u201cshuffled\u201d), two of which have never been published before, and compare their performances with classic one-point crossover. We are able to confirm that the balanced crossover operators perform better than one-point crossover. Furthermore, in two out of three crossovers, the \u201cleft-to-right\u201d version performs better than the \u201cshuffled\u201d version

    Weight of quadratic forms and graph states

    Full text link
    We prove a connection between Schmidt-rank and weight of quadratic forms. This provides a new tool for the classification of graph states based on entanglement. Our main tool arises from a reformulation of previously known results concerning the weight of quadratic forms in terms of graph states properties. As a byproduct, we obtain a straightforward characterization of the weight of functions associated with pivot-minor of bipartite graphs.Comment: 8 pages, 3 eps figure, REVTeX; v2: We have extended the introduction, included extra references and added two figures; v3: small typos fixe
    corecore