113 research outputs found

    Solving Degenerate Sparse Polynomial Systems Faster

    Get PDF
    Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F. Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we also obtain new explicit formulae for the exact number of isolated roots of F and the intersection multiplicity of the positive-dimensional part of Z. Finally, we present a combinatorial construction of non-degenerate polynomial systems, with specified monomial term structure and maximally many isolated roots, which may be of independent interest.Comment: This is the final journal version of math.AG/9702222 (``Toric Generalized Characteristic Polynomials''). This final version is a major revision with several new theorems, examples, and references. The prior results are also significantly improve

    Counting Real Connected Components of Trinomial Curve Intersections and m-nomial Hypersurfaces

    Full text link
    We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees were much larger, e.g., 248832 (for just the non-degenerate roots) via a famous general result of Khovanski. Our bound is sharp, allows real exponents, allows degeneracies, and extends to certain systems of n-variate fewnomials, giving improvements over earlier bounds by a factor exponential in the number of monomials. We also derive analogous sharpened bounds on the number of connected components of the real zero set of a single n-variate m-nomial.Comment: 27 pages, 2 figures. Extensive revision of math.CO/0008069. To appear in Discrete and Computational Geometry. Technique from main theorem (Theorem 1) now pushed as far as it will go. In particular, Theorem 1 now covers certain fewnomial systems of type (n+1,...,n+1,m) and certain non-sparse fewnomial systems. Also, a new result on counting non-compact connected components of fewnomial hypersurfaces (Theorem 3) has been adde

    Mixed Volume Techniques for Embeddings of Laman Graphs

    Get PDF
    Determining the number of embeddings of Laman graph frameworks is an open problem which corresponds to understanding the solutions of the resulting systems of equations. In this paper we investigate the bounds which can be obtained from the viewpoint of Bernstein's Theorem. The focus of the paper is to provide the methods to study the mixed volume of suitable systems of polynomial equations obtained from the edge length constraints. While in most cases the resulting bounds are weaker than the best known bounds on the number of embeddings, for some classes of graphs the bounds are tight.Comment: Thorough revision of the first version. (13 pages, 4 figures
    • …
    corecore