67 research outputs found

    Mark-aided distributed filtering by using neural network for DDoS defense

    Full text link
    Currently Distributed Denial of Service (DDoS) attacks have been identified as one of the most serious problems on the Internet. The aim of DDoS attacks is to prevent legitimate users from accessing desired resources, such as network bandwidth. Hence the immediate task of DDoS defense is to provide as much resources as possible to legitimate users when there is an attack. Unfortunately most current defense approaches can not efficiently detect and filter out attack traffic. Our approach is to find the network anomalies by using neural network, deploy the system at distributed routers, identify the attack packets, and then filter them. The marks in the IP header that are generated by a group of IP traceback schemes, Deterministic Packet Marking (DPM)/Flexible Deterministic Packet Marking (FDPM), assist this process of identifying attack packets. The experimental results show that this approach can be used to defend against both intensive and subtle DDoS attacks, and can catch DDoS attacks&rsquo; characteristic of starting from multiple sources to a single victim. According to results, we find the marks in IP headers can enhance the sensitivity and accuracy of detection, thus improve the legitimate traffic throughput and reduce attack traffic throughput. Therefore, it can perform well in filtering DDoS attack traffic precisely and effectively.<br /

    DoS and DDoS Attacks: Defense, Detection and Traceback Mechanisms - A Survey

    Get PDF
    Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks are typically explicit attempts to exhaust victim2019;s bandwidth or disrupt legitimate users2019; access to services. Traditional architecture of internet is vulnerable to DDoS attacks and it provides an opportunity to an attacker to gain access to a large number of compromised computers by exploiting their vulnerabilities to set up attack networks or Botnets. Once attack network or Botnet has been set up, an attacker invokes a large-scale, coordinated attack against one or more targets. Asa result of the continuous evolution of new attacks and ever-increasing range of vulnerable hosts on the internet, many DDoS attack Detection, Prevention and Traceback mechanisms have been proposed, In this paper, we tend to surveyed different types of attacks and techniques of DDoS attacks and their countermeasures. The significance of this paper is that the coverage of many aspects of countering DDoS attacks including detection, defence and mitigation, traceback approaches, open issues and research challenges

    A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks

    Get PDF
    Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack. © 1998-2012 IEEE

    Flow-oriented anomaly-based detection of denial of service attacks with flow-control-assisted mitigation

    Get PDF
    Flooding-based distributed denial-of-service (DDoS) attacks present a serious and major threat to the targeted enterprises and hosts. Current protection technologies are still largely inadequate in mitigating such attacks, especially if they are large-scale. In this doctoral dissertation, the Computer Network Management and Control System (CNMCS) is proposed and investigated; it consists of the Flow-based Network Intrusion Detection System (FNIDS), the Flow-based Congestion Control (FCC) System, and the Server Bandwidth Management System (SBMS). These components form a composite defense system intended to protect against DDoS flooding attacks. The system as a whole adopts a flow-oriented and anomaly-based approach to the detection of these attacks, as well as a control-theoretic approach to adjust the flow rate of every link to sustain the high priority flow-rates at their desired level. The results showed that the misclassification rates of FNIDS are low, less than 0.1%, for the investigated DDOS attacks, while the fine-grained service differentiation and resource isolation provided within the FCC comprise a novel and powerful built-in protection mechanism that helps mitigate DDoS attacks

    An intelligent, distributed and collaborative DDoS defense system

    Get PDF
    The Distributed Denial-of-Service (DDoS) attack is known as one of the most destructive attacks on the Internet. With the advent of new computing paradigms, such as Cloud and Mobile computing, and the emergence of pervasive technology, such as the Internet of Things, on one hand, these revolutionized technologies enable the availability of services and applications to everyone. On the other hand, these techniques also benefit attackers to exploit the vulnerabilities and deploy attacks in more efficient ways. Latest network security reports have shown that distributed Denial of Service (DDoS) attacks have been growing dramatically in volume, frequency, sophistication and impact, making it one of the most challenging threats in the Internet. An unfortunate state of affairs is that the remediation strategies have fallen behind attackers. The severe impact caused by recent DDoS attacks strongly indicates the need for an effective DDoS defense system. We study the current existing solution space, and summarize three fundamental requirements for an effective DDoS defense system: 1) an accurate detection with minimal false alarms; 2) an effective inline inspection and instant mitigation, and 3) a dynamic, distributed and collaborative defense infrastructure. This thesis aims at providing such a defense system that fulfills all the requirements. In this thesis, we explore and address the problem from three directions: 1) we strive to understand the existing detection strategies and provide a survey of an empirical analysis of machine learning based detection techniques; 2) we develop a novel hybrid detection model which ensembles a deep learning model for a practical flow by flow detection and a classic machine learning model that is aware of the network status, and 3) we present the design and implementation of an intelligent, distributed and collaborative DDoS defense system that effectively mitigate the impact of DDoS attacks. The performance evaluation results show that our proposed defense system is capable of effectively mitigating DDoS attacks impacts and maintaining a limited disturbing for legitimate services

    Understanding and Advancing the Status Quo of DDoS Defense

    Get PDF
    Two decades after the first distributed denial-of-service (DDoS) attack, the Internet remains challenged by DDoS attacks as they evolve. Not only is the scale of attacks larger than ever, but they are also harder to detect and mitigate. Nevertheless, the Internet's fundamental design, based on which machines are free to send traffic to any other machines, remains the same. This thesis reinvestigates the prior DDoS defense solutions to find less studied but critical issues in existing defense solutions. It proposes solutions to improve the input, design, and evaluation of DDoS defense. Specifically, we show why DDoS defense systems need a better view of the Internet's traffic at the autonomous system (AS) level. We use a novel attack to expose the inefficiencies in the existing defense systems. Finally, we reason why a defense solution needs a sound empirical evaluation and provide a framework that mimics real-world networks to facilitate DDoS defense evaluation. This dissertation includes published and unpublished co-authored materials

    Towards Coordinated, Network-Wide Traffic Monitoring for Early Detection of DDoS Flooding Attacks

    Get PDF
    DDoS flooding attacks are one of the biggest concerns for security professionals and they are typically explicit attempts to disrupt legitimate users' access to services. Developing a comprehensive defense mechanism against such attacks requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various such attacks. In this thesis, we dig into the problem of DDoS flooding attacks from four directions: (1) We study the origin of these attacks, their variations, and various existing defense mechanisms against them. Our literature review gives insight into a list of key required features for the next generation of DDoS flooding defense mechanisms. The most important requirement on this list is to see more distributed DDoS flooding defense mechanisms in near future, (2) In such systems, the success in detecting DDoS flooding attacks earlier and in a distributed fashion is highly dependent on the quality and quantity of the traffic flows that are covered by the employed traffic monitoring mechanisms. This motivates us to study and understand the challenges of existing traffic monitoring mechanisms, (3) We propose a novel distributed, coordinated, network-wide traffic monitoring (DiCoTraM) approach that addresses the key challenges of current traffic monitoring mechanisms. DiCoTraM enhances flow coverage to enable effective, early detection of DDoS flooding attacks. We compare and evaluate the performance of DiCoTraM with various other traffic monitoring mechanisms in terms of their total flow coverage and DDoS flooding attack flow coverage, and (4) We evaluate the effectiveness of DiCoTraM with cSamp, an existing traffic monitoring mechanism that outperforms most of other traffic monitoring mechanisms, with regards to supporting early detection of DDoS flooding attacks (i.e., at the intermediate network) by employing two existing DDoS flooding detection mechanisms over them. We then compare the effectiveness of DiCoTraM with that of cSamp by comparing the detection rates and false positive rates achieved when the selected detection mechanisms are employed over DiCoTraM and cSamp. The results show that DiCoTraM outperforms other traffic monitoring mechanisms in terms of DDoS flooding attack flow coverage
    corecore