189 research outputs found

    Solving Large Extensive-Form Games with Strategy Constraints

    Full text link
    Extensive-form games are a common model for multiagent interactions with imperfect information. In two-player zero-sum games, the typical solution concept is a Nash equilibrium over the unconstrained strategy set for each player. In many situations, however, we would like to constrain the set of possible strategies. For example, constraints are a natural way to model limited resources, risk mitigation, safety, consistency with past observations of behavior, or other secondary objectives for an agent. In small games, optimal strategies under linear constraints can be found by solving a linear program; however, state-of-the-art algorithms for solving large games cannot handle general constraints. In this work we introduce a generalized form of Counterfactual Regret Minimization that provably finds optimal strategies under any feasible set of convex constraints. We demonstrate the effectiveness of our algorithm for finding strategies that mitigate risk in security games, and for opponent modeling in poker games when given only partial observations of private information.Comment: Appeared in AAAI 201

    Imperfect-Recall Abstractions with Bounds in Games

    Full text link
    Imperfect-recall abstraction has emerged as the leading paradigm for practical large-scale equilibrium computation in incomplete-information games. However, imperfect-recall abstractions are poorly understood, and only weak algorithm-specific guarantees on solution quality are known. In this paper, we show the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Further, our analysis is tighter in two ways, each of which can lead to an exponential reduction in the solution quality error bound. We then show that for extensive-form games that satisfy certain properties, the problem of computing a bound-minimizing abstraction for a single level of the game reduces to a clustering problem, where the increase in our bound is the distance function. This reduction leads to the first imperfect-recall abstraction algorithm with solution quality bounds. We proceed to show a divide in the class of abstraction problems. If payoffs are at the same scale at all information sets considered for abstraction, the input forms a metric space. Conversely, if this condition is not satisfied, we show that the input does not form a metric space. Finally, we use these results to experimentally investigate the quality of our bound for single-level abstraction

    Regret-Minimizing Double Oracle for Extensive-Form Games

    Full text link
    By incorporating regret minimization, double oracle methods have demonstrated rapid convergence to Nash Equilibrium (NE) in normal-form games and extensive-form games, through algorithms such as online double oracle (ODO) and extensive-form double oracle (XDO), respectively. In this study, we further examine the theoretical convergence rate and sample complexity of such regret minimization-based double oracle methods, utilizing a unified framework called Regret-Minimizing Double Oracle. Based on this framework, we extend ODO to extensive-form games and determine its sample complexity. Moreover, we demonstrate that the sample complexity of XDO can be exponential in the number of information sets ∣S∣|S|, owing to the exponentially decaying stopping threshold of restricted games. To solve this problem, we propose the Periodic Double Oracle (PDO) method, which has the lowest sample complexity among regret minimization-based double oracle methods, being only polynomial in ∣S∣|S|. Empirical evaluations on multiple poker and board games show that PDO achieves significantly faster convergence than previous double oracle algorithms and reaches a competitive level with state-of-the-art regret minimization methods.Comment: Accepted at ICML, 202

    Operational Decision Making under Uncertainty: Inferential, Sequential, and Adversarial Approaches

    Get PDF
    Modern security threats are characterized by a stochastic, dynamic, partially observable, and ambiguous operational environment. This dissertation addresses such complex security threats using operations research techniques for decision making under uncertainty in operations planning, analysis, and assessment. First, this research develops a new method for robust queue inference with partially observable, stochastic arrival and departure times, motivated by cybersecurity and terrorism applications. In the dynamic setting, this work develops a new variant of Markov decision processes and an algorithm for robust information collection in dynamic, partially observable and ambiguous environments, with an application to a cybersecurity detection problem. In the adversarial setting, this work presents a new application of counterfactual regret minimization and robust optimization to a multi-domain cyber and air defense problem in a partially observable environment

    Machine learning applied to the context of Poker

    Get PDF
    A combinação de princípios da teoria de jogo e metodologias de machine learning aplicados ao contexto de formular estratégias ótimas para jogos está a angariar interesse por parte de uma porção crescentemente significativa da comunidade científica, tornando-se o jogo do Poker num candidato de estudo popular devido à sua natureza de informação imperfeita. Avanços nesta área possuem vastas aplicações em cenários do mundo real, e a área de investigação de inteligência artificial demonstra que o interesse relativo a este objeto de estudo está longe de desaparecer, com investigadores do Facebook e Carnegie Mellon a apresentar, em 2019, o primeiro agente de jogo autónomo de Poker provado como ganhador num cenário com múltiplos jogadores, uma conquista relativamente à anterior especificação do estado da arte, que fora desenvolvida para jogos de apenas 2 jogadores. Este estudo pretende explorar as características de jogos estocásticos de informação imperfeita, recolhendo informação acerca dos avanços nas metodologias disponibilizados por parte de investigadores de forma a desenvolver um agente autónomo de jogo que se pretende inserir na classificação de "utility-maximizing decision-maker".The combination of game theory principles and machine learning methodologies applied to encountering optimal strategies for games is garnering interest from an increasing large portion of the scientific community, with the game of Poker being a popular study subject due to its imperfect information nature. Advancements in this area have a wide array of applications in real-world scenarios, and the field of artificial intelligent studies show that the interest regarding this object of study is yet to fade, with researchers from Facebook and Carnegie Mellon presenting, in 2019, the world’s first autonomous Poker playing agent that is proven to be profitable while confronting multiple players at a time, an achievement in relation to the previous state of the art specification, which was developed for two player games only. This study intends to explore the characteristics of stochastic games of imperfect information, gathering information regarding the advancements in methodologies made available by researchers in order to ultimately develop an autonomous agent intended to adhere to the classification of a utility-maximizing decision-maker
    • …
    corecore