17,207 research outputs found

    This is not the Texture you are looking for! Introducing Novel Counterfactual Explanations for Non-Experts using Generative Adversarial Learning

    Get PDF
    With the ongoing rise of machine learning, the need for methods for explaining decisions made by artificial intelligence systems is becoming a more and more important topic. Especially for image classification tasks, many state-of-the-art tools to explain such classifiers rely on visual highlighting of important areas of the input data. Contrary, counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image in a way such that the classifier would have made a different prediction. By doing so, the users of counterfactual explanation systems are equipped with a completely different kind of explanatory information. However, methods for generating realistic counterfactual explanations for image classifiers are still rare. In this work, we present a novel approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques. Additionally, we conduct a user study to evaluate our approach in a use case which was inspired by a healthcare scenario. Our results show that our approach leads to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the art systems that work with saliency maps, namely LIME and LRP

    Feature-based Learning for Diverse and Privacy-Preserving Counterfactual Explanations

    Full text link
    Interpretable machine learning seeks to understand the reasoning process of complex black-box systems that are long notorious for lack of explainability. One flourishing approach is through counterfactual explanations, which provide suggestions on what a user can do to alter an outcome. Not only must a counterfactual example counter the original prediction from the black-box classifier but it should also satisfy various constraints for practical applications. Diversity is one of the critical constraints that however remains less discussed. While diverse counterfactuals are ideal, it is computationally challenging to simultaneously address some other constraints. Furthermore, there is a growing privacy concern over the released counterfactual data. To this end, we propose a feature-based learning framework that effectively handles the counterfactual constraints and contributes itself to the limited pool of private explanation models. We demonstrate the flexibility and effectiveness of our method in generating diverse counterfactuals of actionability and plausibility. Our counterfactual engine is more efficient than counterparts of the same capacity while yielding the lowest re-identification risks

    Probabilistic Action Language pBC+

    Get PDF
    We present an ongoing research on a probabilistic extension of action language BC+. Just like BC+ is defined as a high-level notation of answer set programs for describing transition systems, the proposed language, which we call pBC+, is defined as a high-level notation of LP^{MLN} programs - a probabilistic extension of answer set programs. As preliminary results accomplished, we illustrate how probabilistic reasoning about transition systems, such as prediction, postdiction, and planning problems, as well as probabilistic diagnosis for dynamic domains, can be modeled in pBC+ and computed using an implementation of LP^{MLN}. For future work, we plan to develop a compiler that automatically translates pBC+ description into LP^{MLN} programs, as well as parameter learning in probabilistic action domains through LP^{MLN} weight learning. We will work on defining useful extensions of pBC+ to facilitate hypothetical/counterfactual reasoning. We will also find real-world applications, possibly in robotic domains, to empirically study the performance of this approach to probabilistic reasoning in action domains

    Explaining Recommendation System Using Counterfactual Textual Explanations

    Full text link
    Currently, there is a significant amount of research being conducted in the field of artificial intelligence to improve the explainability and interpretability of deep learning models. It is found that if end-users understand the reason for the production of some output, it is easier to trust the system. Recommender systems are one example of systems that great efforts have been conducted to make their output more explainable. One method for producing a more explainable output is using counterfactual reasoning, which involves altering minimal features to generate a counterfactual item that results in changing the output of the system. This process allows the identification of input features that have a significant impact on the desired output, leading to effective explanations. In this paper, we present a method for generating counterfactual explanations for both tabular and textual features. We evaluated the performance of our proposed method on three real-world datasets and demonstrated a +5\% improvement on finding effective features (based on model-based measures) compared to the baseline method
    • …
    corecore