156 research outputs found

    Two extensions of Ramsey's theorem

    Get PDF
    Ramsey's theorem, in the version of Erd\H{o}s and Szekeres, states that every 2-coloring of the edges of the complete graph on {1, 2,...,n} contains a monochromatic clique of order 1/2\log n. In this paper, we consider two well-studied extensions of Ramsey's theorem. Improving a result of R\"odl, we show that there is a constant c>0c>0 such that every 2-coloring of the edges of the complete graph on \{2, 3,...,n\} contains a monochromatic clique S for which the sum of 1/\log i over all vertices i \in S is at least c\log\log\log n. This is tight up to the constant factor c and answers a question of Erd\H{o}s from 1981. Motivated by a problem in model theory, V\"a\"an\"anen asked whether for every k there is an n such that the following holds. For every permutation \pi of 1,...,k-1, every 2-coloring of the edges of the complete graph on {1, 2, ..., n} contains a monochromatic clique a_1<...<a_k with a_{\pi(1)+1}-a_{\pi(1)}>a_{\pi(2)+1}-a_{\pi(2)}>...>a_{\pi(k-1)+1}-a_{\pi(k-1)}. That is, not only do we want a monochromatic clique, but the differences between consecutive vertices must satisfy a prescribed order. Alon and, independently, Erd\H{o}s, Hajnal and Pach answered this question affirmatively. Alon further conjectured that the true growth rate should be exponential in k. We make progress towards this conjecture, obtaining an upper bound on n which is exponential in a power of k. This improves a result of Shelah, who showed that n is at most double-exponential in k.Comment: 21 pages, accepted for publication in Duke Math.

    Flows and bisections in cubic graphs

    Get PDF
    A kk-weak bisection of a cubic graph GG is a partition of the vertex-set of GG into two parts V1V_1 and V2V_2 of equal size, such that each connected component of the subgraph of GG induced by ViV_i (i=1,2i=1,2) is a tree of at most k−2k-2 vertices. This notion can be viewed as a relaxed version of nowhere-zero flows, as it directly follows from old results of Jaeger that every cubic graph GG with a circular nowhere-zero rr-flow has a ⌊r⌋\lfloor r \rfloor-weak bisection. In this paper we study problems related to the existence of kk-weak bisections. We believe that every cubic graph which has a perfect matching, other than the Petersen graph, admits a 4-weak bisection and we present a family of cubic graphs with no perfect matching which do not admit such a bisection. The main result of this article is that every cubic graph admits a 5-weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5-flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs which do contain bridges.Comment: 14 pages, 6 figures - revised versio
    • …
    corecore