427 research outputs found

    Counterexample-Guided Learning of Monotonic Neural Networks

    Full text link
    The widespread adoption of deep learning is often attributed to its automatic feature construction with minimal inductive bias. However, in many real-world tasks, the learned function is intended to satisfy domain-specific constraints. We focus on monotonicity constraints, which are common and require that the function's output increases with increasing values of specific input features. We develop a counterexample-guided technique to provably enforce monotonicity constraints at prediction time. Additionally, we propose a technique to use monotonicity as an inductive bias for deep learning. It works by iteratively incorporating monotonicity counterexamples in the learning process. Contrary to prior work in monotonic learning, we target general ReLU neural networks and do not further restrict the hypothesis space. We have implemented these techniques in a tool called COMET. Experiments on real-world datasets demonstrate that our approach achieves state-of-the-art results compared to existing monotonic learners, and can improve the model quality compared to those that were trained without taking monotonicity constraints into account

    A Robust Optimisation Perspective on Counterexample-Guided Repair of Neural Networks

    Full text link
    Counterexample-guided repair aims at creating neural networks with mathematical safety guarantees, facilitating the application of neural networks in safety-critical domains. However, whether counterexample-guided repair is guaranteed to terminate remains an open question. We approach this question by showing that counterexample-guided repair can be viewed as a robust optimisation algorithm. While termination guarantees for neural network repair itself remain beyond our reach, we prove termination for more restrained machine learning models and disprove termination in a general setting. We empirically study the practical implications of our theoretical results, demonstrating the suitability of common verifiers and falsifiers for repair despite a disadvantageous theoretical result. Additionally, we use our theoretical insights to devise a novel algorithm for repairing linear regression models based on quadratic programming, surpassing existing approaches.Comment: Accepted at ICML 2023. 9 pages + 13 pages appendix, 8 figure

    Quantitative Verification with Neural Networks

    Get PDF
    We present a data-driven approach to the quantitative verification of probabilistic programs and stochastic dynamical models. Our approach leverages neural networks to compute tight and sound bounds for the probability that a stochastic process hits a target condition within finite time. This problem subsumes a variety of quantitative verification questions, from the reachability and safety analysis of discrete-time stochastic dynamical models, to the study of assertion-violation and termination analysis of probabilistic programs. We rely on neural networks to represent supermartingale certificates that yield such probability bounds, which we compute using a counterexample-guided inductive synthesis loop: we train the neural certificate while tightening the probability bound over samples of the state space using stochastic optimisation, and then we formally check the certificate's validity over every possible state using satisfiability modulo theories; if we receive a counterexample, we add it to our set of samples and repeat the loop until validity is confirmed. We demonstrate on a diverse set of benchmarks that, thanks to the expressive power of neural networks, our method yields smaller or comparable probability bounds than existing symbolic methods in all cases, and that our approach succeeds on models that are entirely beyond the reach of such alternative techniques.Comment: The conference version of this manuscript appeared at CONCUR 202

    A Theory of Formal Synthesis via Inductive Learning

    Full text link
    Formal synthesis is the process of generating a program satisfying a high-level formal specification. In recent times, effective formal synthesis methods have been proposed based on the use of inductive learning. We refer to this class of methods that learn programs from examples as formal inductive synthesis. In this paper, we present a theoretical framework for formal inductive synthesis. We discuss how formal inductive synthesis differs from traditional machine learning. We then describe oracle-guided inductive synthesis (OGIS), a framework that captures a family of synthesizers that operate by iteratively querying an oracle. An instance of OGIS that has had much practical impact is counterexample-guided inductive synthesis (CEGIS). We present a theoretical characterization of CEGIS for learning any program that computes a recursive language. In particular, we analyze the relative power of CEGIS variants where the types of counterexamples generated by the oracle varies. We also consider the impact of bounded versus unbounded memory available to the learning algorithm. In the special case where the universe of candidate programs is finite, we relate the speed of convergence to the notion of teaching dimension studied in machine learning theory. Altogether, the results of the paper take a first step towards a theoretical foundation for the emerging field of formal inductive synthesis

    Smooth Monotonic Networks

    Full text link
    Monotonicity constraints are powerful regularizers in statistical modelling. They can support fairness in computer supported decision making and increase plausibility in data-driven scientific models. The seminal min-max (MM) neural network architecture ensures monotonicity, but often gets stuck in undesired local optima during training because of vanishing gradients. We propose a simple modification of the MM network using strictly-increasing smooth non-linearities that alleviates this problem. The resulting smooth min-max (SMM) network module inherits the asymptotic approximation properties from the MM architecture. It can be used within larger deep learning systems trained end-to-end. The SMM module is considerably simpler and less computationally demanding than state-of-the-art neural networks for monotonic modelling. Still, in our experiments, it compared favorably to alternative neural and non-neural approaches in terms of generalization performance
    • …
    corecore