19 research outputs found

    Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4

    Full text link
    We find a graph of genus 55 and its drawing on the orientable surface of genus 44 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani-Tutte theorem cannot be extended to the orientable surface of genus 44. As a base step in the construction we use a counterexample to an extension of the unified Hanani-Tutte theorem on the torus.Comment: 12 pages, 4 figures; minor revision, new section on open problem

    Strong Hanani-Tutte for the Torus

    Get PDF
    If a graph can be drawn on the torus so that every two independent edges cross an even number of times, then the graph can be embedded on the torus

    The Z2\mathbb{Z}_2-genus of Kuratowski minors

    Full text link
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2\mathbb{Z}_2-genus of a graph GG is the minimum gg such that GG has an independently even drawing on the orientable surface of genus gg. An unpublished result by Robertson and Seymour implies that for every tt, every graph of sufficiently large genus contains as a minor a projective t×tt\times t grid or one of the following so-called tt-Kuratowski graphs: K3,tK_{3,t}, or tt copies of K5K_5 or K3,3K_{3,3} sharing at most 22 common vertices. We show that the Z2\mathbb{Z}_2-genus of graphs in these families is unbounded in tt; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2\mathbb{Z}_2-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2\mathbb{Z}_2-genus of graphs.Comment: 23 pages, 7 figures; a few references added and correcte

    The Z_2-Genus of Kuratowski Minors

    Get PDF
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t x t grid or one of the following so-called t-Kuratowski graphs: K_{3,t}, or t copies of K_5 or K_{3,3} sharing at most 2 common vertices. We show that the Z_2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z_2-genus, solving a problem posed by Schaefer and Stefankovic, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces

    LIPIcs

    Get PDF
    The genus g(G) of a graph G is the minimum g such that G has an embedding on the orientable surface M_g of genus g. A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G, denoted by g_0(G), is the minimum g such that G has an independently even drawing on M_g. By a result of Battle, Harary, Kodama and Youngs from 1962, the graph genus is additive over 2-connected blocks. In 2013, Schaefer and Stefankovic proved that the Z_2-genus of a graph is additive over 2-connected blocks as well, and asked whether this result can be extended to so-called 2-amalgamations, as an analogue of results by Decker, Glover, Huneke, and Stahl for the genus. We give the following partial answer. If G=G_1 cup G_2, G_1 and G_2 intersect in two vertices u and v, and G-u-v has k connected components (among which we count the edge uv if present), then |g_0(G)-(g_0(G_1)+g_0(G_2))|= m >= 3, we prove that g_0(K_{m,n})/g(K_{m,n})=1-O(1/n). Similar results are proved also for the Euler Z_2-genus. We express the Z_2-genus of a graph using the minimum rank of partial symmetric matrices over Z_2; a problem that might be of independent interest

    Hanani-Tutte for radial planarity

    Get PDF
    A drawing of a graph G is radial if the vertices of G are placed on concentric circles C 1 , . . . , C k with common center c , and edges are drawn radially : every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Toth

    Level-Planarity: Transitivity vs. Even Crossings

    Get PDF
    The strong Hanani-Tutte theorem states that a graph is planar if and only if it can be drawn such that any two edges that do not share an end cross an even number of times. Fulek et al. (2013, 2016, 2017) have presented Hanani-Tutte results for (radial) level-planarity where the yy-coordinates (distances to the origin) of the vertices are prescribed. We show that the 2-SAT formulation of level-planarity testing due to Randerath et al. (2001) is equivalent to the strong Hanani-Tutte theorem for level-planarity (2013). By elevating this relationship to radial level planarity, we obtain a novel polynomial-time algorithm for testing radial level-planarity in the spirit of Randerath et al

    On the interplay of combinatorics, geometry, topology and computational complexity

    Get PDF
    Matematicko-fyzikální fakult
    corecore