67,519 research outputs found

    Hysteretic behavior of angular dependence of exchange bias in FeNi/FeMn bilayers

    Get PDF
    For FeNi/FeMn bilayers, the angular dependence of exchange bias shows hysteresis between clockwise and counterclockwise rotations, as a new signature. The hysteresis decreases for thick antiferromagnet layers. Calculations have clearly shown that the orientation of antiferromagnet spins also exhibits hysteresis between clockwise and counterclockwise rotations. This furnishes an interpretation of the macroscopic behavior of the ferromagnetic layer in terms of the thermally driven evolution of the magnetic state of the antiferromagnet layer

    Phyllotaxis and handedness in date palm (Phoenix dactylifera L.)

    Full text link
    The present study had as objectives to measure the palm leaf divergence angle in the field, to determine the frequency of trees and offshoots showing clockwise and counterclockwise phyllotaxis, to establish the relationship between phyllotaxis of the mother tree and that of its offshoots, and, finally, to determine the effect of the divergence angle value on production. Materials and methods. The vegetal material was composed of four Moroccan cultivars of Phoenix dactylifera L. Observations were conducted in the south of Morocco on 20 trees per cultivar and four offshoots per tree. The divergence angle was measured on adult trees whereas phyllotaxic direction (clockwise or counterclockwise) was noted for both offshoots and adult trees. Results and discussion. This study showed that the phyllotaxic direction of the offshoots presents a clockwise or counterclockwise phyllotaxis independently of the mother plant. The divergence angle varied depending on the cultivar. This character is an interesting criterion, both for the selection of the best adapted cultivars for the marginal date palm growing regions, and for an optimal production

    Berry phases in an electric-dipole-moment experiment in an all-electric storage ring

    Full text link
    Systematic effects caused by the Berry (geometric) phases in an electric-dipole-moment experiment in an all-electric storage ring are considered. We analyze the experimental setup when the spin is frozen and local longitudinal and vertical electric fields alternate. Due to the Berry phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The Berry phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear. However, another systematic effect of the spin rotation about the azimuthal axis takes place and has opposite signs for clockwise and counterclockwise beams.Comment: final versio

    Four quadrant control circuit for a brushless three-phase dc motor

    Get PDF
    A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results

    Coordination of flagella on filamentous cells of Escherichia coli

    Get PDF
    Video techniques were used to study the coordination of different flagella on single filamentous cells of Escherichia coli. Filamentous, nonseptate cells were produced by introducing a cell division mutation into a strain that was polyhook but otherwise wild type for chemotaxis. Markers for its flagellar motors (ordinary polyhook cells that had been fixed with glutaraldehyde) were attached with antihook antibodies. The markers were driven alternately clockwise and counterclockwise, at angular velocities comparable to those observed when wild-type cells are tethered to glass. The directions of rotation of different markers on the same cell were not correlated; reversals of the flagellar motors occurred asynchronously. The bias of the motors (the fraction of time spent spinning counterclockwise) changed with time. Variations in bias were correlated, provided that the motors were within a few micrometers of one another. Thus, although the directions of rotation of flagellar motors are not controlled by a common intracellular signal, their biases are. This signal appears to have a limited range

    Revised Pacific-Antarctic plate motions and geophysics of the Menard Fracture Zone

    Get PDF
    A reconnaissance survey of multibeam bathymetry and magnetic anomaly data of the Menard Fracture Zone allows for significant refinement of plate motion history of the South Pacific over the last 44 million years. The right-stepping Menard Fracture Zone developed at the northern end of the Pacific-Antarctic Ridge within a propagating rift system that generated the Hudson microplate and formed the conjugate Henry and Hudson Troughs as a response to a major plate reorganization ∼45 million years ago. Two splays, originally about 30 to 35 km apart, narrowed gradually to a corridor of 5 to 10 km width, while lineation azimuths experienced an 8° counterclockwise reorientation owing to changes in spreading direction between chrons C13o and C6C (33 to 24 million years ago). We use the improved Pacific-Antarctic plate motions to analyze the development of the southwest end of the Pacific-Antarctic Ridge. Owing to a 45° counterclockwise reorientation between chrons C27 and C20 (61 to 44 million years ago) this section of the ridge became a long transform fault connected to the Macquarie Triple Junction. Following a clockwise change starting around chron C13o (33 million years ago), the transform fault opened. A counterclockwise change starting around chron C10y (28 millions years ago) again led to a long transform fault between chrons C6C and C5y (24 to 10 million years ago). A second period of clockwise reorientation starting around chron C5y (10 million years ago) put the transform fault into extension, forming an array of 15 en echelon transform faults and short linking spreading centers

    Symmetry Breaking in a Model for Nodal Cilia

    Get PDF
    Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction

    Post-early Messinian counterclockwise rotations on Crete: implications for Late Miocene to Recent kinematics of the southern Hellenic arc

    Get PDF
    Most geodynamical models for the kinematics of the central Mediterranean recognise that major tectonic rotations must have played an important role during the Neogene. The Hellenic arc is believed to have been subjected to clockwise rotations in the west and counterclockwise rotations in the east, while the southern part (Crete) shows no rotations (Kissel and Laj, 1988). Many qualitative and quantitative models are based on the idea that Crete did not rotate. We present new palaeomagnetic data which show that post-early Messinian counterclockwise rotations have occurred on Crete. The amount of counterclockwise rotation generally varies between 10º and 20º, but in central Crete much larger rotations (up to 40º counterclockwise) were found. Only a few sections did not show any rotation. The anisotropy of magnetic susceptibility (AMS) shows lineations, which are consistently WNWESE throughout Crete, indicating post-rotational WNW-ESE extension, or NNE-SSE compression. The observed counterclockwise rotations are consistent with the results of tectonic modelling by Ten Veen and Meijer (1998). The latter study compares the late-Middle Miocene to Recent kinematics with modelled intra-plate stresses for various possible distributions of plate boundary forces. Observations reveal that motion along left-lateral and right-lateral faults occurred during the Pliocene. The model analysis shows these motions to be consistent with transform resistance along the eastern segment of the overriding margin. The counterclockwise block rotations observed by us are probably a consequence of displacements along the left-lateral and right-lateral faults and could reflect a similar tectonic regime that involved transform resistance. Ó 1998 Elsevier Science B.V. All rights reserved
    corecore